English

C के सभी वास्तविक मानों के लिए समीकरण-युग्म x – 2y = 8, 5x – 10y = c का एक अद्वितीय हल हैऔचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य। - Mathematics (गणित)

Advertisements
Advertisements

Question

c के सभी वास्तविक मानों के लिए समीकरण-युग्म x – 2y = 8, 5x – 10y = c का एक अद्वितीय हल हैऔचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।  

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन असत्य है।

स्पष्टीकरण: 

दिया गया रैखिक समीकरणों का युग्म,

x – 2y – 8 = 0

5x – 10y = c

यहाँ, a1 = 1, b1 = –2, c1 = a – 8

a2 = 5, b2 = –10, c2 = – c

अब, `a_1/a_2 = 1/5, b_1/b_2 = (-2)/(-10) = 1/5`

`c_1/c_2 = (-8)/(-c) = 8/c`

लेकिन अगर c = 40 (वास्तविक मान)

तब अनुपात `c_1/c_2`,  `1/5` हो जाता है और फिर रैखिक समीकरणों की प्रणाली के अपरिमित रूप से कई समाधान होते हैं।

अतः, c = 40, रैखिक समीकरणों के निकाय का कोई अद्वितीय हल नहीं है।

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  Is there an error in this question or solution?
Chapter 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.2 [Page 23]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.2 | Q 5. | Page 23

RELATED QUESTIONS

2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और दो kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:

3x + 2y = 5; 2x - 3y = 7


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

x + y = 5, 2x + 2y = 10


क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए। 

`3x + 1/7y = 3, 7x + 3y = 7`


क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए। 

–2x – 3y = 1, 6y + 4x = – 2


क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

–3x – 4y = 12, 4y + 3x = 12


समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।


निम्नलिखित समीकरण-युग्म को आलेखीय रूप से हल कीजिए:

2x + y = 6, 2x – y + 2 = 0

उन दो त्रिभुजों के क्षेत्रफलों का अनुपात ज्ञात कीजिए, जो इन समीकरणों को निरूपित करने वाली रेखाओं द्वारा क्रमश: x-अक्ष और y-अक्ष द्वारा बनाए जाते हैं।


रेखाओं y = x, 3y = x और x + y = 8 से बनने वाले त्रिभुज के शीर्षों के निर्देशांक आलेखीय विधि से निर्धारित कीजिए।


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म का एक अद्वितीय हल होगा?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×