Advertisements
Advertisements
प्रश्न
c के सभी वास्तविक मानों के लिए समीकरण-युग्म x – 2y = 8, 5x – 10y = c का एक अद्वितीय हल हैऔचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।
विकल्प
सत्य
असत्य
उत्तर
यह कथन असत्य है।
स्पष्टीकरण:
दिया गया रैखिक समीकरणों का युग्म,
x – 2y – 8 = 0
5x – 10y = c
यहाँ, a1 = 1, b1 = –2, c1 = a – 8
a2 = 5, b2 = –10, c2 = – c
अब, `a_1/a_2 = 1/5, b_1/b_2 = (-2)/(-10) = 1/5`
`c_1/c_2 = (-8)/(-c) = 8/c`
लेकिन अगर c = 40 (वास्तविक मान)
तब अनुपात `c_1/c_2`, `1/5` हो जाता है और फिर रैखिक समीकरणों की प्रणाली के अपरिमित रूप से कई समाधान होते हैं।
अतः, c = 40, रैखिक समीकरणों के निकाय का कोई अद्वितीय हल नहीं है।
APPEARS IN
संबंधित प्रश्न
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:
2x - 3y = 8; 4x - 6y = 9
निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।
x - y = 8, 3x - 3y = 16
क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।
`3x + y - 3 = 0, 2x + 2/3y` = 2
समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।
x = 7 द्वारा निरूपित रेखा x अक्ष के समांतर है औचित्य के साथ उत्तर दीजिए कि यह सत्य है या असत्य।
a और b के किन मानों के लिए, निम्नलिखित रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
x + 2y = 1
(a – b)x + (a + b)y = a + b – 2
आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।
x – 2y = 6, 3x – 6y = 0
समीकरण 2x + y = 4 और 2x – y = 4 के युग्म का आलेख खींचिए। इन रेखाओं और y-अक्ष से बनने वाले त्रिभुज के शीर्ष बिंदुओं के निर्देशांक लिखिए। साथ ही, इस त्रिभुज का क्षेत्रफल भी ज्ञात कीजिए।
निम्नलिखित समीकरण-युग्म को आलेखीय रूप से हल कीजिए:
2x + y = 6, 2x – y + 2 = 0
उन दो त्रिभुजों के क्षेत्रफलों का अनुपात ज्ञात कीजिए, जो इन समीकरणों को निरूपित करने वाली रेखाओं द्वारा क्रमश: x-अक्ष और y-अक्ष द्वारा बनाए जाते हैं।
रेखाओं y = x, 3y = x और x + y = 8 से बनने वाले त्रिभुज के शीर्षों के निर्देशांक आलेखीय विधि से निर्धारित कीजिए।