Advertisements
Advertisements
Question
Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.
Options
`[-1/2, 1/2]`
R – [–1, 1]
`R - [-1/2, 1/2]`
(–1, 1) – {0}
MCQ
Fill in the Blanks
Solution
Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is `underlinebb([-1/2, 1/2]`.
Explanation:
f(x) = `x/(1 + x^2), x ∈ R`
Let y = f(x)
∴ y = `x/(1 + x^2)`
⇒ yx2 − x + y = 0
⇒ x = `(1 ± sqrt(1 - 4y^2))/(2y)`
For x to be defined,
1 − 4y2 ≥ 0, y ≠ 0
⇒ `y ∈ [-1/2, 1/2] - {0}`
But for x = 0, y = 0
∴ R(f) = `[-1/2, 1/2]`
shaalaa.com
Is there an error in this question or solution?