English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Let g(x, y) = x2yx4+y2 for (x, y) ≠ (0, 0) = 0. Show that gkklim(x, y)→(0, 0)g(x, y)=k1+k2 along every parabola y = kx2, k ∈ R\{0} - Mathematics

Advertisements
Advertisements

Question

Let g(x, y) = `(x^2y)/(x^4 + y^2)` for (x, y) ≠ (0, 0) = 0. Show that `lim_((x,  y) -> (0,  0)) "g"(x,  y) = "k"/(1 + "k"^2)` along every parabola y = kx2, k ∈ R\{0}

Sum

Solution

Given g(x, y) = `(x^2y)/(x^4 + y^2)` for (x, y) ≠ (0, 0) and f(0, 0) = 0

 g(x, y) = `(x^2y)/(x^4 + y^2)` along every parabola y = kx2, k ∈ R\{0}

`lim_((x,  y) -> (0,  0)) "g"(x, y) = lim_((x,  kx^2) -> (0,  0)) (x^2(kx^2))/(x^4 + (kx^2)^2`

= `lim_((x,  kx^2) -> (0,  0)) (kx^4)/(x^4 (1 + k^2)^2`

= `lim_((x,  kx^2) -> (0,  0)) ((k)/(1 + k^2))`

= `k/(1 + "k"^2)`

Hence proved.

shaalaa.com
Limit and Continuity of Functions of Two Variables
  Is there an error in this question or solution?
Chapter 8: Differentials and Partial Derivatives - Exercise 8.3 [Page 73]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 8 Differentials and Partial Derivatives
Exercise 8.3 | Q 5. (ii) | Page 73
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×