Advertisements
Advertisements
Question
Let g(x, y) = `(x^2y)/(x^4 + y^2)` for (x, y) ≠ (0, 0) = 0. Show that `lim_((x, y) -> (0, 0)) "g"(x, y)` = 0 along every line y = mx, m ∈ R
Solution
Given g(x, y) `(x^2y)/(x^4 + y^2)` for (x, y) ≠ (0, 0) and f(0, 0) = 0
Along the line y = mx, m ∈ R
`lim_((x, y) -> (0, 0)) "g"(x, y) = lim_((x, mx) -> (0, 0)) ((x^2("m"x))/(x^4 + ("m"x)^2))`
= `lim_((x, mx) -> (0, 0)) (("m"x^3)/(x^4 + "m"^2x^2))`
= `lim_((x, mx) -> (0, 0)) (("m"x)/(x^2 + "m"^2))`
= `0/"m"^2`
= 0
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate `lim_((x, y) -> (1, 2)) "g"(x, y)`, if the limit exists, where `"g"(x, y) = (3x2 - xy)/(x^2 + y^2 + 3)`
Evaluate `lim_((x, y) -> (0, 0)) cos((x^3 + y^2)/(x + y + 2))` If the limits exists
Let f(x, y) = `(y^2 - xy)/(sqrt(x) - sqrt(y))` for (x, y) ≠ (0, 0). Show that `lim_((x, y) -> (0, 0)) "f"(x, y)` = 0
Evaluate `lim_((x, y) -> (0, 0)) cos(("e"^x sin y)/y)`, if the limit exists
Let g(x, y) = `(x^2y)/(x^4 + y^2)` for (x, y) ≠ (0, 0) = 0. Show that `lim_((x, y) -> (0, 0)) "g"(x, y) = "k"/(1 + "k"^2)` along every parabola y = kx2, k ∈ R\{0}
Show that f(x, y) = `(x^2 - y^2)/(y - 1)` s continuous at every (x, y) ∈ R2
Let g(x, y) = `("e"^y sin x)/x` for x ≠ 0 and g(0, 0) = 1 shoe that g is continuous at (0, 0)