Advertisements
Advertisements
Question
Let l be the lower class limit of a class-interval in a frequency distribution and m be the mid point of the class. Then, the upper class limit of the class is
Options
- m+ \[\frac{l + m}{2}\]
l+ \[\frac{m + l}{2}\]
2m − 1
m − 2l
Solution
Given that, the lower class limit of a class-interval is l and the mid-point of the class is m. Let u be the upper class limit of the class-interval. Therefore, we have
`m = (l+u) /2`
⇒ l +u = 2m
⇒ u = 2m - 1
Thus the upper class limit of the class is (2m - l) .
APPEARS IN
RELATED QUESTIONS
The relative humidity (in %) of a certain city for a month of 30 days was as follows:-
98.1 | 98.6 | 99.2 | 90.3 | 86.5 | 95.3 | 92.9 | 96.3 | 94.2 | 95.1 |
89.2 | 92.3 | 97.1 | 93.5 | 92.7 | 95.1 | 97.2 | 93.3 | 95.2 | 97.3 |
96.2 | 92.1 | 84.9 | 90.2 | 95.7 | 98.3 | 97.3 | 96.1 | 92.1 | 89 |
(i) Construct a grouped frequency distribution table with classes
84 - 86, 86 - 88
(ii) Which month or season do you think this data is about?
(iii) What is the range of this data?
A study was conducted to find out the concentration of sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:-
0.03 | 0.08 | 0.08 | 0.09 | 0.04 | 0.17 |
0.16 | 0.05 | 0.02 | 0.06 | 0.18 | 0.20 |
0.11 | 0.08 | 0.12 | 0.13 | 0.22 | 0.07 |
0.08 | 0.01 | 0.10 | 0.06 | 0.09 | 0.18 |
0.11 | 0.07 | 0.05 | 0.07 | 0.01 | 0.04 |
(i) Make a grouped frequency distribution table for this data with class intervals as 0.00 - 0.04, 0.04 - 0.08, and so on.
(ii) For how many days, was the concentration of sulphur dioxide more than 0.11 parts per million?
A company manufactures car batteries of a particular type. The lives (in years) of 40 such batteries were recorded as follows:-
2.6 | 3.0 | 3.7 | 3.2 | 2.2 | 4.1 | 3.5 | 4.5 |
3.5 | 2.3 | 3.2 | 3.4 | 3.8 | 3.2 | 4.6 | 3.7 |
2.5 | 4.4 | 3.4 | 3.3 | 2.9 | 3.0 | 4.3 | 2.8 |
3.5 | 3.2 | 3.9 | 3.2 | 3.2 | 3.1 | 3.7 | 3.4 |
4.6 | 3.8 | 3.2 | 2.6 | 3.5 | 4.2 | 2.9 | 3.6 |
Construct a grouped frequency distribution table for this data, using class intervals of size 0.5 starting from the intervals 2 − 2.5.
Construct a frequency table with equal class intervals from the following data on the monthly
wages (in rupees) of 28 laborers working in a factory, taking one of the class intervals as
210-230 (230 not included):
220, 268, 258, 242, 210, 268, 272, 242, 311, 290, 300, 320, 319, 304, 302, 318, 306, 292,
254, 278, 210, 240, 280, 316, 306, 215, 256, 236.
Following are the ages of360 patients getting medical treatment in a hospital on a day:
Age (in years): |
10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
No. of Patients: |
90 | 50 | 60 | 80 | 50 | 30 |
Construct a cumulative frequency distribution.
The following cumulative frequency distribution table shows the daily electricity consumption (in kW) of 40 factories in an industrial state:
Consumption (in kW) | No. of Factories |
Below 240 | 1 |
Below 270 | 4 |
Below 300 | 8 |
Below 330 | 24 |
Below 360 | 33 |
Below 390 | 38 |
Below 420 | 40 |
(i) Represent this as a frequency distribution table.
(ii) Prepare a cumulative frequency table.
In the class intervals 10-20, 20-30, 20 is taken in
Tallys are usually marked in a bunch of
The width of each of five continuous classes in a frequency distribution is 5 and the lower class-limit of the lowest class is 10. The upper class-limit of the highest class is ______.
Convert the given frequency distribution into a continuous grouped frequency distribution:
Class interval | Frequency |
150 – 153 | 7 |
154 – 157 | 7 |
158 – 161 | 15 |
162 – 165 | 10 |
166 – 169 | 5 |
170 – 173 | 6 |
In which intervals would 153.5 and 157.5 be included?