English

Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f. f(x) = {0.5x for0≤x≤20 otherwise.Calculate : P(X ≤ 1) - Mathematics and Statistics

Advertisements
Advertisements

Question

Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)

Sum

Solution

P(X ≤ 1) = `int_0^1 f(x)*dx`

= `int_0^1 0.5x*dx`

= `0.5 int_0^2*dx`

= `(0.5)/(2)[x^2]_0^1`

= `(1)/(4)[1 - 0]`

= `(1)/(4)`.

shaalaa.com
Probability Distribution of a Continuous Random Variable
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Exercise 8.2 [Page 145]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Probability Distributions
Exercise 8.2 | Q 1.05 | Page 145

RELATED QUESTIONS

Verify which of the following is p.d.f. of r.v. X:

 f(x) = 2, for 0 ≤ x ≤ 1.


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is even


Check whether the following is a p.d.f. 

f(x) = `{(x, "for"  0 ≤ x ≤ 1),(2 - x, "for"  1 < x ≤ 2.):}`


Check whether the following is a p.d.f.

f(x) = 2  for 0 < x < q.


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise"):}`

Find the probability that waiting time is between 1 and 3 minutes.


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(–1 < X < 1)


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find expression for the c.d.f. of X.


If a r.v. X has p.d.f f(x) = `{("c"/x","  1 < x < 3"," "c" > 0),(0","  "otherwise"):}` 
Find c, E(X), and Var(X). Also Find F(x).


Choose the correct alternative :

If p.m.f. of r.v.X is given below.

x 0 1 2
P(x) q2 2pq p2 

Then Var(X) = _______


Choose the correct alternative :

Given p.d.f. of a continuous r.v.X as f(x) =  `x^2/(3)` for –1 < x < 2 = 0 otherwise then F(1) = _______.


Fill in the blank :

If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

In the following probability distribution of a r.v.X.

x 1 2 3 4 5
P (x) `(1)/(20)` `(3)/(20)` a 2a `(1)/(20)`

Find a and obtain the c.d.f. of X.


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X < – 0.5 or X > 0.5)


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{((1)/(2"a")",", "for"  0 <  x= 2"a".),(0, "otherwise".):}`
Show that `"P"("X" < "a"/2) = "P"("X" > (3"a")/2)`


If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×