Advertisements
Advertisements
Question
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
0 _____ A
Options
∈
∉
Solution
0 ∉ A
क्योंकि 0, A का अवयव नहीं है।
APPEARS IN
RELATED QUESTIONS
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
भारत के दस सबसे अधिक प्रतिभाशाली लेखकों का संग्रह।
पहचानें कि निम्नलिखित समुच्चय है या नहीं? अपने उत्तर का औचित्य बताइए।
इस अध्याय में आने वाले प्रश्नों का संग्रह।
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
8 _____ A
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
4 _____ A
मान लीजिए A = {1, 2, 3, 4, 5, 6}, रिक्त स्थान में उपयुक्त प्रतीक ∈ अथवा ∉ भरिए।
10 _____ A
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
C = {x : x दो अंको की ऐसी प्राकृत संख्या है जिसके अंकों का योगफल 8 है।}
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
E = TRIGONOMETRY शब्द के सभी अक्षरों का समुच्चय
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
F = BETTER शब्द के सभी अक्षरों का समुच्च्य
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{3, 6, 9, 12}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{2, 4, 6, ….}
निम्नलिखित समुच्चय को समुच्चय निर्माण रूप में व्यक्त कीजिए:
{1, 4, 9, ....., 100}
निम्नलिखित समुच्चय के सभी अवयवों (सदस्यों) को सूचीबद्ध कीजिए।
A = {x : x एक विषम प्राकृत संख्या है}
यदि A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} और D = {7, 8, 9, 10}, तो निम्नलिखित ज्ञात कीजिए:
B ∪ C ∪ D
बताइए कि निम्नलिखित कथन में से कौन से कथन सत्य और कौन से असत्य है। अपने उत्तर का औचित्य भी बतलाइए।
37 ∉ {x | x के तथ्यतः (exactly) दो धन गुणनखंड हैं}
दिया है कि, E = {2, 4, 6, 8, 10} यदि n, E के किसी सदस्य (अवयव) को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित सभी संख्याओं वाले समुच्चय लिखिए:
n + 1
दिया है कि, E = {2, 4, 6, 8, 10} यदि n, E के किसी सदस्य (अवयव) को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित सभी संख्याओं वाले समुच्चय लिखिए:
n2
मान लीजिए कि X = {1, 2, 3, 4, 5, 6} यदि n, X के किसी सदस्य को निरूपित करता है, तो निम्नलिखित को समुच्चय रूप में व्यक्त कीजिए
n ∈ X, परंतु 2n ∉ X
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
C = {x | x अभाज्य संख्या p का एक धनात्मक गुणनखंड है}
निम्नलिखित समुच्चय को रोस्टर रूप में लिखिए:
E = `{w | (w - 2)/(w + 3) = 3, w ∈ R}`
यदि Y = {x | x संख्या 2p−1(2p − 1) का एक धनात्मक गुणनखंड है, जहाँ 2p − 1 एक अभाज्य संख्या है}, तो Y को रोस्टर रूप में लिखिए।
दिया है कि X = {1, 2, 3}, यदि n समुच्चय के X किसी सदस्य को निरूपित करता है, तो निम्नलिखित द्वारा निरूपित समस्त संख्याओं को अंतर्विष्ट (Contain) करने वाले समुच्चयों को लिखिए:
यदि Y = {1, 2, 3, … 10}, तथा a समुच्चय Y के किसी अवयव को निरूपित करता है, तो उन समुच्चयों को लिखिए जिनके अंतर्विष्ट समस्त अवयव निम्नलिखित प्रतिबंधों (Conditions) को संतुष्ट करते हैं:
a ∈ Y परंतु a2 ∉ Y