Advertisements
Advertisements
Question
Mark out the correct options.
(a) Diamagnetism occurs in all materials.
(b) Diamagnetism results from the partial alignment of permanent magnetic moment.
(c) The magnetising field intensity, H, is always zero in free space.
(d) The magnetic field of induced magnetic moment is opposite the applied field.
Solution
(a) Diamagnetism occurs in all materials.
(d) The magnetic field of induced magnetic moment is opposite the applied field.
When a material is placed in magnetic field, dipole moment are induced in the atoms by the applied magnetic field. Since the direction of magnetic field due to induced dipole moment is opposite to the applied magnetic field. Therefore, resultant magnetic field is smaller than the applied magnetic field. This process is called diamagnetism. As this process takes place for all the material, therefore all the material exhibit diamagnetism. Hence, option (a) and (d) are correct.
Diamagnetic material do not have permanent magnetic moment on their own. When they are placed in magnetic field, dipole moments are induced by the applied magnetic field. Thus, there is no net alignment of permanent magnetic moment so these mterials do not have any permanenet magnetic momentof their own. Hence, option (b) is incorrect.
Magnetic field intensity is not zero in free space. Hence, option (c) is incorrect.
APPEARS IN
RELATED QUESTIONS
Find the magnetization of a bar magnet of length 10 cm and cross-sectional area 4 cm2, if the magnetic moment is 2 Am2.
The magnetic intensity H at the centre of a long solenoid carrying a current of 2.0 A, is found to be 1500 A m−1. Find the number of turns per centimetre of the solenoid.
The magnetic field inside a long solenoid of 50 turns cm−1 is increased from 2.5 × 10−3 T to 2.5 T when an iron core of cross-sectional area 4 cm2 is inserted into it. Find (a) the current in the solenoid (b) the magnetisation I of the core and (c) the pole strength developed in the core.
What does the ratio of magnetization to magnetic intensity indicate?
Define magnetic intensity.
An iron rod is placed parallel to magnetic field of intensity 2000 A/m. The magnetic flux through the rod is 6 × 10−4 Wb and its cross-sectional area is 3cm2. The magnetic permeability of the rod in `"Wb"/("A" - "m")` is ____________.
The magnetic susceptibility is given by ______
Relative permeability of nickel is 550, then its magnetic susceptibility will be ____________.
Coercivity of a magnet where the ferromagnet gets completely demagnetized is 6 x 103 Am-1. The minimum current required to be passed in a solenoid having 2000 turns per metre, so that the magnet gets completely demagnetized when placed inside the solenoid is ____________.
An iron rod is placed parallel to magnetic field of intensity 4000 A/m. The magnetic flux through the rod is 8 x 10-4 Wb and its cross-sectional area is 4 cm2 . The magnetic permeability of the rod in Wb/A - m is ____________.
A magnet of magnetic moment 6 Am2 weighs 65 g. The density of the material of the magnet is 6500 kg/m3. What is the magnetization?
Assertion: Susceptibility is defined as the ratio of intensity of magnetisation I to magnetic intensity H.
Reason: Greater the value of susceptibility, smaller the value of intensity of magnetisation I.
What is the magnetization of a bar magnet having length 5 cm and area of cross section 2 cm2? (M = 1 Am2)
The magnetic moment produced in a substance of mass 5 gram is 6 x 10-7 Am2 If its density is 5 g/cm3, then intensity of magnetization in `"A"/"m"` will be ____________.
A magnetic needle of magnetic moment 6.7 × 10–2 Am2 and moment of inertia 7.5 × 10–6 kg m2 is performing simple harmonic oscillations in a magnetic field of 0.01 T. Time taken for 10 complete oscillations is ______.
What is magnetic susceptibility?
State SI unit of Magnetization.