Advertisements
Advertisements
Question
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`{x cos (y/x) + y sin (y/x)} y dx = {y sin (y/x) - x cos (y/x)} x dy`
Solution
दिया गया अवकल समीकरण
`{x cos (y/x) + y sin (y/x)} y dx = {y sin (y/x) - x cos (y/x)} x dy`
या `dy/dx = ({x cos (y/x) + y sin (y/x)} y)/({y sin (y/x) - x cos (y/x)} x)`
या `dy/dx = ((y/x) {cos (y/x) + y/x sin (y/x)})/({y/x sin (y/x) - cos (y/x)} x) = g (y/x)` (माना) .... (i)
अवकलन समीकरण का दायाँ पक्ष `g (y/x)` के रूप में है। इसलिए यह शून्य घात वाला सम घातीय अवकल समीकरण है।
∴ y = vx रखने पर,
v + x `(dv)/dx = ((cos v + v sin v) v)/(v sin v - cos v)`
⇒ x `(dv)/dx = (v cos v + v^2 sin v)/(v sin v - cos v) - v`
= v cos v + v2 sin v
⇒ x `(dv)/dx = (- v^2 sin v + v cos v)/(v sin v - cos v)`
⇒ x `(dv)/dx = (2v cos v)/(v sin v - cos v)`
`= (v sin v - cos v)/(v cos v) dv = 2/x dx`
`= (tan v - 1/v) dv = 1/x dx`
समाकलन करने पर,
log sec v - log v = 2 log x + log C
log `((sec v)/v)` = log x2 = log C
log `((sec v)/v)` = log cx2
sec v = v. Cx2
अंत: v के स्थान पर `y/x` रखने पर
`sec (y/x) = (y/x). Cx^2`
`sec (y/x) = Cxy`
`xy cos |y/x| = C`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`y' = (x + y)/x`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
(x2 - y2) dx + 2xy dy = 0
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`x^2 dy/dx = x^2 - 2y^2 + xy`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
x dy - y dx = `sqrt(x^2 + y^2)` dx
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`x dy/dx - y + x sin (y/x) = 0`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`y dx + x log(y/x)dy - 2x dy = 0`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`(1 + e^(x/y))dx + e^(x/y)(1 - x/y) dy = 0`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
x2dy + (xy + y2) dx = 0; y = 1 यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`[x sin^2 (y/x) - y]dx + x dy = 0; y = pi/4` यदि x = 1
`dx/dy = h(x/y)` के रूप वाले समघातीय अवकल समीकरण को हल करने के लिए निम्नलिखित में से कौन-सा प्रतिस्थापन किया जाता है:
निम्नलिखित में से कौन-सा समघातीय अवकल समीकरण है?
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 2y = sin x`
मूल बिंदु से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता उस बिंदु के निर्देशांकों के योग के बराबर है।
बिंदु (0, 2) से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिन्दु के निर्देशांकों का योग उस बिंदु पर खींची गई स्पर्श रेखा की प्रवणता के परिमाण से 5 अधिक है।
अवकल समीकरण `(y dx - x dy)/y = 0` का व्यापक हल है: