Advertisements
Advertisements
Question
The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.
Aptitude score (X) | 60 | 62 | 65 | 70 | 72 | 48 | 53 | 73 | 65 | 82 |
Productivity Index (Y) | 68 | 60 | 62 | 80 | 85 | 40 | 52 | 62 | 60 | 81 |
Obtain the two regression equations and estimate the test score when the productivity index is 75.
Solution
Here, X = Aptitude score, Y = Productivity index
X = xi | Y =yi | `"x"_"i" - bar"x"` | `bar"y"_"i" - bar"y"` | `("x"_"i" - bar"x")^2` | `("y"_"i" - bar"y")^2` | `("x"_"i" - bar"x")("y"_"i" - bar"y")` |
60 | 68 | -5 | 3 | 25 | 9 | -15 |
62 | 60 | -3 | -5 | 9 | 25 | 15 |
65 | 62 | 0 | -3 | 0 | 9 | 0 |
70 | 80 | 5 | 15 | 25 | 225 | 75 |
72 | 85 | 7 | 20 | 49 | 400 | 140 |
48 | 40 | -17 | -25 | 289 | 625 | 425 |
53 | 52 | -12 | -13 | 144 | 169 | 156 |
73 | 62 | 8 | -3 | 64 | 9 | -24 |
65 | 60 | 0 | -5 | 0 | 25 | 0 |
82 | 81 | 17 | 16 | 289 | 256 | 272 |
650 | 650 | - | - | 894 | 1752 | 1044 |
From the table, we have
n = 10, ∑ xi = 650, ∑ yi = 650
∴ `bar"x" = (sum "x"_"i")/"n" = 650/10 = 65`
`bar"y" = (sum "y"_"i")/"n" = 650/10 = 65`
Since the mean of X and Y are whole numbers, we will use the formula
`"b"_"YX" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) and "b"_"XY" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("y"_"i" - bar"y")^2)`
From the table, we have
`sum ("x"_"i" - bar"x")("y"_"i" - bar"y") = 1044, sum ("x"_"i" - bar"x")^2 = 894, sum ("y"_"i" - bar"y") = 1752`
`"b"_"XY" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) = 1044/1752 = 0.59`
Now, `"a"' = bar"x" - "b"_"XY" bar"y"`
= 65 - 0.59 × 65 = 65 - 38.35 = 26.65
∴ The regression equation of Aptitude score (X) on productivity index (Y) is
X = a' + bXY Y
∴ X = 26.65 + 0.59 Y
For Y = 75,
X = 26.65 + 0.59 × 75 = 26.65 + 44.25 = 70.9
∴ The test score is 70.9 when productivity index is 75
APPEARS IN
RELATED QUESTIONS
The HRD manager of a company wants to find a measure which he can use to fix the monthly income of persons applying for the job in the production department. As an experimental project, he collected data of 7 persons from that department referring to years of service and their monthly incomes.
Years of service (X) | 11 | 7 | 9 | 5 | 8 | 6 | 10 |
Monthly Income (₹ 1000's)(Y) | 10 | 8 | 9 | 5 | 9 | 7 | 11 |
- Find the regression equation of income on years of service.
- What initial start would you recommend for a person applying for the job after having served in a similar capacity in another company for 13 years?
Calculate the regression equations of X on Y and Y on X from the following data:
X | 10 | 12 | 13 | 17 | 18 |
Y | 5 | 6 | 7 | 9 | 13 |
From the following data estimate y when x = 125.
X | 120 | 115 | 120 | 125 | 126 | 123 |
Y | 13 | 15 | 14 | 13 | 12 | 14 |
Compute the appropriate regression equation for the following data:
X [Independent Variable] |
2 | 4 | 5 | 6 | 8 | 11 |
Y [dependent Variable] | 18 | 12 | 10 | 8 | 7 | 5 |
The following are the marks obtained by the students in Economics (X) and Mathematics (Y)
X | 59 | 60 | 61 | 62 | 63 |
Y | 78 | 82 | 82 | 79 | 81 |
Find the regression equation of Y on X.
From the following data obtain the equation of two regression lines:
X | 6 | 2 | 10 | 4 | 8 |
Y | 9 | 11 | 5 | 8 | 7 |
For the following data, find the regression line of Y on X
X | 1 | 2 | 3 |
Y | 2 | 1 | 6 |
Hence find the most likely value of y when x = 4.
From the following data, find the regression equation of Y on X and estimate Y when X = 10.
X | 1 | 2 | 3 | 4 | 5 | 6 |
Y | 2 | 4 | 7 | 6 | 5 | 6 |
Choose the correct alternative.
If u = `("x - a")/"c" and "v" = ("y - b")/"d" "then" "b"_"yx"` = _________
Choose the correct alternative.
bxy = ______
Choose the correct alternative.
If equations of regression lines are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 then means of x and y are __________
Fill in the blank:
Regression equation of Y on X is_________
Fill in the blank:
If u = `"x - a"/"c" and "v" = "y - b"/"d"` then bxy = _______
Fill in the blank:
If u = `"x - a"/"c" and "v" = "y - b"/"d"` then byx = _______
Fill in the blank:
|bxy + byx| ≥ ______
Fill in the blank:
bxy . byx = _______
State whether the following statement is True or False.
bxy and byx are independent of change of origin and scale.
‘r’ is regression coefficient of Y on X
If bxy < 0 and byx < 0 then 'r ' is ______.