Advertisements
Advertisements
Question
The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.
Aptitude score (X) | 60 | 62 | 65 | 70 | 72 | 48 | 53 | 73 | 65 | 82 |
Productivity Index (Y) | 68 | 60 | 62 | 80 | 85 | 40 | 52 | 62 | 60 | 81 |
Obtain the two regression equations and estimate the productivity index of a worker whose test score is 95.
Solution
Here, X = Aptitude score, Y = Productivity index
X = xi | Y =yi | `"x"_"i" - bar"x"` | `bar"y"_"i" - bar"y"` | `("x"_"i" - bar"x")^2` | `("y"_"i" - bar"y")^2` | `("x"_"i" - bar"x")("y"_"i" - bar"y")` |
60 | 68 | -5 | 3 | 25 | 9 | -15 |
62 | 60 | -3 | -5 | 9 | 25 | 15 |
65 | 62 | 0 | -3 | 0 | 9 | 0 |
70 | 80 | 5 | 15 | 25 | 225 | 75 |
72 | 85 | 7 | 20 | 49 | 400 | 140 |
48 | 40 | -17 | -25 | 289 | 625 | 425 |
53 | 52 | -12 | -13 | 144 | 169 | 156 |
73 | 62 | 8 | -3 | 64 | 9 | -24 |
65 | 60 | 0 | -5 | 0 | 25 | 0 |
82 | 81 | 17 | 16 | 289 | 256 | 272 |
650 | 650 | - | - | 894 | 1752 | 1044 |
From the table, we have
n = 10, ∑ xi = 650, ∑ yi = 650
∴ `bar"x" = (sum "x"_"i")/"n" = 650/10 = 65`
`bar"y" = (sum "y"_"i")/"n" = 650/10 = 65`
Since the mean of X and Y are whole numbers, we will use the formula
`"b"_"YX" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) and "b"_"XY" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("y"_"i" - bar"y")^2)`
From the table, we have
`sum ("x"_"i" - bar"x")("y"_"i" - bar"y") = 1044, sum ("x"_"i" - bar"x")^2 = 894, sum ("y"_"i" - bar"y") = 1752`
`"b"_"YX" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) = 1044/894 = 1.16`
Now, `"a" = bar"y" - "b"_"YX" bar"x"`
= 65 - 1.16 × 65 = 65 - 75.4 = - 10.4
∴ The regression equation of productivity index (Y) on Aptitude score (X) is
Y = a + bYX X
∴ Y = - 10.4 + 1.16 X
For X = 95,
Y = - 10.4 + 1.16(95) = - 10.4 + 110.2 = 99.8
∴ The productivity index of worker with a test score of 95 is 99.8.
APPEARS IN
RELATED QUESTIONS
Choose the correct alternative:
There are ______ types of regression equations
The HRD manager of a company wants to find a measure which he can use to fix the monthly income of persons applying for the job in the production department. As an experimental project, he collected data of 7 persons from that department referring to years of service and their monthly incomes.
Years of service (X) | 11 | 7 | 9 | 5 | 8 | 6 | 10 |
Monthly Income (₹ 1000's)(Y) | 10 | 8 | 9 | 5 | 9 | 7 | 11 |
- Find the regression equation of income on years of service.
- What initial start would you recommend for a person applying for the job after having served in a similar capacity in another company for 13 years?
Calculate the regression equations of X on Y and Y on X from the following data:
X | 10 | 12 | 13 | 17 | 18 |
Y | 5 | 6 | 7 | 9 | 13 |
From the following data estimate y when x = 125.
X | 120 | 115 | 120 | 125 | 126 | 123 |
Y | 13 | 15 | 14 | 13 | 12 | 14 |
The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.
Aptitude score (X) | 60 | 62 | 65 | 70 | 72 | 48 | 53 | 73 | 65 | 82 |
Productivity Index (Y) | 68 | 60 | 62 | 80 | 85 | 40 | 52 | 62 | 60 | 81 |
Obtain the two regression equations and estimate the test score when the productivity index is 75.
The following are the marks obtained by the students in Economics (X) and Mathematics (Y)
X | 59 | 60 | 61 | 62 | 63 |
Y | 78 | 82 | 82 | 79 | 81 |
Find the regression equation of Y on X.
From the following data obtain the equation of two regression lines:
X | 6 | 2 | 10 | 4 | 8 |
Y | 9 | 11 | 5 | 8 | 7 |
From the following data, find the regression equation of Y on X and estimate Y when X = 10.
X | 1 | 2 | 3 | 4 | 5 | 6 |
Y | 2 | 4 | 7 | 6 | 5 | 6 |
The following sample gives the number of hours of study (X) per day for an examination and marks (Y) obtained by 12 students.
X | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 7 | 8 |
Y | 45 | 60 | 55 | 60 | 75 | 70 | 80 | 75 | 90 | 80 | 75 | 85 |
Obtain the line of regression of marks on hours of study.
Choose the correct alternative.
If u = `("x - a")/"c" and "v" = ("y - b")/"d" "then" "b"_"yx"` = _________
The regression equation of y on x is given by 3x + 2y − 26 = 0. Find byx.
Choose the correct alternative.
If bxy < 0 and byx < 0 then 'r' is __________
Fill in the blank:
|bxy + byx| ≥ ______
Fill in the blank:
If byx > 1 then bxy is _______
Regression equation of X on Y is `("y" - bar "y") = "b"_"yx" ("x" - bar "x")`
State whether the following statement is True or False.
byx is correlation coefficient between X and Y
State whether the following statement is True or False.
If u = x - a and v = y - b then bxy = buv
Compute the appropriate regression equation for the following data:
x (Dependent Variable) | 10 | 12 | 13 | 17 | 18 |
y (Independent Variable) | 5 | 6 | 7 | 9 | 13 |
If bxy < 0 and byx < 0 then 'r ' is ______.