हिंदी

The following table gives the aptitude test scores and productivity indices of 10 workers selected at random. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.

Aptitude score (X) 60 62 65 70 72 48 53 73 65 82
Productivity Index (Y) 68 60 62 80 85 40 52 62 60 81

Obtain the two regression equations and estimate the productivity index of a worker whose test score is 95.

योग

उत्तर

Here, X = Aptitude score, Y = Productivity index

X = xi Y =yi `"x"_"i" - bar"x"` `bar"y"_"i" - bar"y"` `("x"_"i" - bar"x")^2` `("y"_"i" - bar"y")^2` `("x"_"i" - bar"x")("y"_"i" - bar"y")`
60 68 -5 3 25 9 -15
62 60 -3 -5 9 25 15
65 62 0 -3 0 9 0
70 80 5 15 25 225 75
72 85 7 20 49 400 140
48 40 -17 -25 289 625 425
53 52 -12 -13 144 169 156
73 62 8 -3 64 9 -24
65 60 0 -5 0 25 0
82 81 17 16 289 256 272
650 650 - - 894 1752 1044

From the table, we have

n = 10, ∑ xi = 650,  ∑ yi = 650

∴ `bar"x" = (sum "x"_"i")/"n" = 650/10 = 65`

`bar"y" = (sum "y"_"i")/"n" = 650/10 = 65`

Since the mean of X and Y are whole numbers, we will use the formula

`"b"_"YX" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) and  "b"_"XY" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("y"_"i" - bar"y")^2)`

From the table, we have

`sum ("x"_"i" - bar"x")("y"_"i" - bar"y") = 1044, sum ("x"_"i" - bar"x")^2 = 894, sum ("y"_"i" - bar"y") = 1752`

`"b"_"YX" = (sum ("x"_"i" - bar"x")("y"_"i" - bar"y"))/(sum("x"_"i" - bar"x")^2) = 1044/894 = 1.16`

Now, `"a" = bar"y" - "b"_"YX" bar"x"`

= 65 - 1.16 × 65 = 65 - 75.4 = - 10.4

∴ The regression equation of productivity index (Y) on Aptitude score (X) is

Y = a + bYX X

∴ Y = - 10.4 + 1.16 X

For X = 95,

Y = - 10.4 + 1.16(95) = - 10.4 + 110.2 = 99.8

∴ The productivity index of worker with a test score of 95 is 99.8.

shaalaa.com
Types of Linear Regression
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.1 [पृष्ठ ४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.1 | Q 5.1 | पृष्ठ ४१

संबंधित प्रश्न

The following are the marks obtained by the students in Economics (X) and Mathematics (Y)

X 59 60 61 62 63
Y 78 82 82 79 81

Find the regression equation of Y on X.


The following sample gives the number of hours of study (X) per day for an examination and marks (Y) obtained by 12 students.

X 3 3 3 4 4 5 5 5 6 6 7 8
Y 45 60 55 60 75 70 80 75 90 80 75 85

Obtain the line of regression of marks on hours of study.


Choose the correct alternative.

If u = `("x - a")/"c" and "v" = ("y - b")/"d"  "then"   "b"_"xy"` = _________


Choose the correct alternative.

Corr (x, x) = _____


The regression equation of y on x is given by 3x + 2y − 26 = 0. Find byx


Choose the correct alternative.

byx = ______


Choose the correct alternative.

bxy = ______


Choose the correct alternative.

If bxy < 0 and byx < 0 then 'r' is __________


Choose the correct alternative.

If equations of regression lines are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 then means of x and y are __________


Fill in the blank:

If bxy < 0 and byx < 0 then ‘r’ is __________


Fill in the blank:

Regression equation of Y on X is_________


Fill in the blank:

Corr (x, −x) = __________


Fill in the blank:

If u = `"x - a"/"c" and  "v" = "y - b"/"d"` then byx = _______


Fill in the blank:

|bxy + byx| ≥ ______


Fill in the blank:

If byx > 1 then bxy is _______


State whether the following statement is True or False.

Regression equation of Y on X is `("y" - bar "y") = "b"_"yx" ("x" - bar "x")`


State whether the following statement is True or False.

bxy and byx are independent of change of origin and scale. 


State whether the following statement is True or False:

Correlation analysis is the theory of games


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×