English

Compute the appropriate regression equation for the following data: x (Dependent Variable) 10 12 13 17 18 y (Independent Variable) 5 6 7 9 13 - Mathematics and Statistics

Advertisements
Advertisements

Question

Compute the appropriate regression equation for the following data:

x (Dependent Variable) 10 12 13 17 18
y (Independent Variable) 5 6 7 9 13
Chart

Solution

  X = xi Y = yi xi2 yi2 xiyi
  10 5 100 25 50
  12 6 144 36 72
  13 7 169 49 91
  17 9 289 81 153
  18 13 324 169 234
Total 70 40 1026 360 600

From the table, we have,

n = 5, Σxi = 70, Σyi = 40, Σxiyi = 600, Σxi2 = 1026, Σyi2 = 360

`barx = (sumx_"i")/"n" = 70/5` = 14, `bary = (sumy_"i")/"n" = 40/5` = 8

Now, for regression equation of X on Y

bxy = `(sumx_"i"y_"i" - "n"bar(x)  bar(y))/(sumy_"i"^2 - "n" bar(y)^(-2))`

= `(600 - 5 xx 14 xx 8)/(360 - 5(8)^2)`

= `(600 - 560)/(360 - 320)`

= `40/40`

= 1

Also, a' = `barx - "b"_(xy)  bary` = 14 – 1 (8)

= 14 – 8

= 6

∴ The regression equation of X on Y is

X = a' + bxy Y

∴ X = 6 + Y

shaalaa.com
Types of Linear Regression
  Is there an error in this question or solution?
Chapter 2.3: Linear Regression - Q.4

RELATED QUESTIONS

Choose the correct alternative:

There are ______ types of regression equations


Calculate the regression equations of X on Y and Y on X from the following data:

X 10 12 13 17 18
Y 5 6 7 9 13

The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.

Aptitude score (X) 60 62 65 70 72 48 53 73 65 82
Productivity Index (Y) 68 60 62 80 85 40 52 62 60 81

Obtain the two regression equations and estimate the productivity index of a worker whose test score is 95.


The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.

Aptitude score (X) 60 62 65 70 72 48 53 73 65 82
Productivity Index (Y) 68 60 62 80 85 40 52 62 60 81

Obtain the two regression equations and estimate the test score when the productivity index is 75.


The following are the marks obtained by the students in Economics (X) and Mathematics (Y)

X 59 60 61 62 63
Y 78 82 82 79 81

Find the regression equation of Y on X.


For the following data, find the regression line of Y on X

X 1 2 3
Y 2 1 6

Hence find the most likely value of y when x = 4.


From the following data, find the regression equation of Y on X and estimate Y when X = 10.

X 1 2 3 4 5 6
Y 2 4 7 6 5 6

Choose the correct alternative.

If u = `("x - a")/"c" and "v" = ("y - b")/"d"  "then"   "b"_"yx"` = _________


Choose the correct alternative.

byx = ______


Choose the correct alternative.

Cov (x, y) = __________


Choose the correct alternative.

If bxy < 0 and byx < 0 then 'r' is __________


Fill in the blank:

If bxy < 0 and byx < 0 then ‘r’ is __________


Fill in the blank:

There are __________ types of regression equations.


Fill in the blank:

Corr (x, −x) = __________


Fill in the blank:

If u = `"x - a"/"c" and  "v" = "y - b"/"d"` then byx = _______


Fill in the blank:

|bxy + byx| ≥ ______


Fill in the blank:

bxy . byx = _______


State whether the following statement is True or False.

Regression equation of Y on X is `("y" - bar "y") = "b"_"yx" ("x" - bar "x")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×