English

Points (3, 0) and (-1, 0) Are Invarient Points Under Reflection in the Line L1; Point (0, -3) and (0, 1) Are Invarient Points on Reflection in Line L2. (I) Write the Equation of the Line L1 and L2. - Mathematics

Advertisements
Advertisements

Question

Points (3, 0) and (-1, 0) are invarient points under reflection in the line L1; point (0, -3) and (0, 1) are invarient points on reflection in line L2.
(i) Write the equation of the line L1 and L2.
(ii) Write down the images of points P(3, 4) and Q(-5, -2) on reflection in L1. Name the images as P' and Q' respectively.
(iii) Write down the images of P and Q on reflection in L2. Name the image as P'' and Q'' respectively.

Sum

Solution

(i) (3, 0) and (-1, 0) lies on X-axis, so these are invariant under reflection on the X-axis. Hence, L1 lies on X-axis So, equation of line L1, is y = 0.
(0, -3) and (0, 1) lies on Y-axis, so these are invariant under reflection on the Y-axis. So, equation of line L2 is y = 0.
(ii) P' ⇒ (3, -4)
Q' ⇒ (-5, 2).
(iii) P'' ⇒ (-3, 4)
Q'' ⇒ (5, -2).

shaalaa.com
Invariant Points.
  Is there an error in this question or solution?
Chapter 7: Reflection - Exercise 3

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 7 Reflection
Exercise 3 | Q 13

RELATED QUESTIONS

  1. Point P (a, b) is reflected in the x-axis to P’ (5, –2). Write down the values of a and b.
  2. P” is the image of P when reflected in the y-axis. Write down the co-ordinates of P”.
  3. Name a single transformation that maps P’ to P”.

The point (–2, 0) on reflection in a line is mapped to (2, 0) and the point (5, –6) on reflection in the same line is mapped to (–5, –6).

  1. State the name of the mirror line and write its equation.
  2. State the co-ordinates of the image of (–8, –5) in the mirror line.

A point P (–2, 3) is reflected in line x = 2 to point P’. Find the co-ordinates of P’.


Points A and B have co-ordinates (3, 4) and (0, 2) respectively. Find the image:

  1. A’ of A under reflection in the x-axis.
  2. B’ of B under reflection in the line AA’.
  3. A” of A under reflection in the y-axis.
  4. B” of B under reflection in the line AA”.

The point P (5, 3) was reflected in the origin to get the image P’.

  1. Write down the co-ordinates of P’.
  2. If M is the foot of the perpendicular from P to the x-axis, find the co-ordinates of M.
  3. If N is the foot of the perpendicular from P’ to the x-axis, find the co-ordinates of N.
  4. Name the figure PMP’N.
  5. Find the area of the figure PMP’N.

The point P (3, 4) is reflected to P’ in the x-axis; and O’ is the image of O (the origin) when reflected in the line PP’. Write:

  1. the co-ordinates of P’ and O’.
  2. the length of the segments PP’ and OO’.
  3. the perimeter of the quadrilateral POP’O’.
  4. the geometrical name of the figure POP’O’.

A (1, 1), B (5, 1), C (4, 2) and D (2, 2) are vertices of a quadrilateral. Name the quadrilateral ABCD. A, B, C, and D are reflected in the origin on to A’, B’, C’ and D’ respectively. Locate A’, B’, C’ and D’ on the graph sheet and write their co-ordinates. Are D, A, A’ and D’ collinear?


The triangle ABC, where A is (2, 6), B is (–3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C'. Triangle A'B'C' is then reflected in the origin to triangle A"B"C".

  1. Write down the co-ordinates of A", B" and C".
  2. Write down a single transformation that maps triangle ABC onto triangle A"B"C".

Using a graph paper, plot the point A (6, 4) and B (0, 4).

(a) Reflect A and B in the origin to get the image A’ and B’.

(b) Write the co-ordinates of A’ and B’.

(c) Sate the geometrical name for the figure ABA’B’.

(d) Find its perimeter.


Use a graph paper for this question.

(Take 2 cm = 1 unit on both x and y axes)

  1. Plot the following points: A(0, 4), B(2, 3), C(1, 1) and D(2, 0).
  2. Reflect points B, C, D on the y-axis and write down their coordinates. Name the images as B', C', D' respectively.
  3. Join the points A, B, C, D, D', C', B' and A in order, so as to form a closed figure. Write down the equation to the line about which if this closed figure obtained is folded, the two parts of the figure exactly coincide.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×