Advertisements
Advertisements
Question
Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?
Solution
Positronium (Ps) is a system consisting of an electron and its anti-particle a positron, bound together into an exotic atom, specifically anonium. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The orbit and energy levels of the two particles arc similar to that of the hydrogen atom (which is a bound slate of a proton and an electron). However, because of the reduced mass, the frequencies of the spectral lines are less than half of the corresponding hydrogen lines.
As in the new H-atom (positronium), the proton is replaced by the position of mass m = me/2 as under
Mass of positronium = m = `m_e^- + m_e^+`
`m_e^+ = m_e^(-1) = m_e/2`
As En = – 13.6 and so the energy of positron
`E_n = (-m_e^+e^4)/(8ε_0n^2h^2) = (-[m_e/2]e^4)/(8ε_0n^2h^2) = (-13.6)/2`
So `E_n = 13.6/2` ......`(∵ m_e = m/2)`
En = – 6.8 eV
APPEARS IN
RELATED QUESTIONS
Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).
(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.
(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.
Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.
When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.
What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?
Which of the following curves may represent the speed of the electron in a hydrogen atom as a function of trincipal quantum number n?
(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.
What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?
A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength 50 nm. Assuming that the entire photon energy is taken up by the electron with what kinetic energy will the electron be ejected?
Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.
Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.
- it will not be absorbed at all.
- some of atoms will move to the first excited state.
- all atoms will be excited to the n = 2 state.
- no atoms will make a transition to the n = 3 state.