English
Karnataka Board PUCPUC Science Class 11

What is the Energy of a Hydrogen Atom in the First Excited State If the Potential Energy is Taken to Be Zero in the Ground State? - Physics

Advertisements
Advertisements

Question

What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?

Sum

Solution

In ground state, the potential energy of a hydrogen atom is zero.

An electron is bound to the nucleus with an energy of 13.6 eV.

Therefore, we have to give 13.6 eV energy to move the electron from the nucleus.

Let us calculate the excitation energy required to take an atom from the ground state (n= 1) to the first excited state (n = 2).

`E = 13.6 xx(1/n_1^2 - 1/n_2^2) eV`

Therefore, the excitation energy is given by

`E =13.6xx (1/1^2 - 1/2^2)  eV`

`E = 13.6 xx 3/4 eV = 10.2 eV`

Energy of 10.2 eV is needed to take an atom from the ground state to the first excited state.

∴ Total energy of an atom in the first excitation state = 13.6 eV + 10.2 eV = 23.8 eV

shaalaa.com
The Line Spectra of the Hydrogen Atom
  Is there an error in this question or solution?
Chapter 21: Bohr’s Model and Physics of Atom - Exercises [Page 384]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 21 Bohr’s Model and Physics of Atom
Exercises | Q 15 | Page 384

RELATED QUESTIONS

A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?


Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.


Which wavelengths will be emitted by a sample of atomic hydrogen gas (in ground state) if electrons of energy 12.2 eV collide with the atoms of the gas?


When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.


What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?


The minimum orbital angular momentum of the electron in a hydrogen atom is


The radius of the shortest orbit in a one-electron system is 18 pm. It may be


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


Find the radius and energy of a He+ ion in the states (a) n = 1, (b) n = 4 and (c) n = 10.


Find the maximum Coulomb force that can act on the electron due to the nucleus in a hydrogen atom.


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.


A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength 50 nm. Assuming that the entire photon energy is taken up by the electron with what kinetic energy will the electron be ejected?


Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.

  1. it will not be absorbed at all.
  2. some of atoms will move to the first excited state.
  3. all atoms will be excited to the n = 2 state.
  4. no atoms will make a transition to the n = 3 state.

Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×