Advertisements
Advertisements
Question
Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.
Solution
Given:
Wavelength of red light, λ = 653.1 nm = 653.1 × 10 m
Kinetic energy of H2 molecules (K) is given by
`K = 3/2 KT` .......(1)
Here, `K = 8.62 xx 10^-5 eV/K`
T = Temperature of H2 molecules
Energy released (E) when atom goes from
ground state to n = 3 is given by
`E = 13.6 (1/n_1^2 - 1/n_2^2)`
For ground state, n1 = 1
Also, n2 = 3
`therefore E = 13.6 (1/1 - 1/9)`
= `13.6 (8/9)` .............(2)
kinetic energy of H2 molecules = Energy released when hydrogen atom goes from ground state to n = 3 state
`therefore 3/2 xx 8.62 xx 10^-5xxT = (13.6xx8)/9`
`rArr T = (13.6xx8xx2)/(9xx3xx8.62xx10^-5)`
= 9.4 × 104 K
APPEARS IN
RELATED QUESTIONS
Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.
When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.
What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?
The minimum orbital angular momentum of the electron in a hydrogen atom is
As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom
Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let r, u, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state
Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.
(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.
A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.
Find the maximum Coulomb force that can act on the electron due to the nucleus in a hydrogen atom.
A hydrogen atom in a state having a binding energy of 0.85 eV makes transition to a state with excitation energy 10.2 e.V (a) Identify the quantum numbers n of the upper and the lower energy states involved in the transition. (b) Find the wavelength of the emitted radiation.
What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?
A gas of hydrogen-like ions is prepared in a particular excited state A. It emits photons having wavelength equal to the wavelength of the first line of the Lyman series together with photons of five other wavelengths. Identify the gas and find the principal quantum number of the state A.
Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).
Average lifetime of a hydrogen atom excited to n = 2 state is 10−8 s. Find the number of revolutions made by the electron on the average before it jumps to the ground state.
Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value.
Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?
When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.
Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.