English
Karnataka Board PUCPUC Science Class 11

A Gas of Hydrogen-like Ions is Prepared in a Particular Excited State A. It Emits Photons Having Wavelength Equal to the Wavelength of the First Line of the Lyman Series Together with - Physics

Advertisements
Advertisements

Question

A gas of hydrogen-like ions is prepared in a particular excited state A. It emits photons having wavelength equal to the wavelength of the first line of the Lyman series together with photons of five other wavelengths. Identify the gas and find the principal quantum number of the state A.

Sum

Solution

(a) If the atom is excited to the principal quantum (n), then the number of transitions is given by

`(n(n-1))/2`

It is given that a total of 6 photons are emitted. Therefore, total number of transitions is 6.

`therefore (n(n-1))/2`

= 6

⇒ n = 4

Thus, the principal quantum number is 4 and the gas is in the 4th excited state.

shaalaa.com
The Line Spectra of the Hydrogen Atom
  Is there an error in this question or solution?
Chapter 21: Bohr’s Model and Physics of Atom - Exercises [Page 384]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 21 Bohr’s Model and Physics of Atom
Exercises | Q 17 | Page 384

RELATED QUESTIONS

What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?


As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom


An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision


Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)

(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


A hydrogen atom emits ultraviolet radiation of wavelength 102.5 nm. What are the quantum numbers of the states involved in the transition?


(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.


A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?


Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.


The average kinetic energy of molecules in a gas at temperature T is 1.5 kT. Find the temperature at which the average kinetic energy of the molecules of hydrogen equals the binding energy of its atoms. Will hydrogen remain in molecular from at this temperature? Take k = 8.62 × 10−5 eV K−1.


Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×