English
Karnataka Board PUCPUC Science Class 11

Find the Maximum Angular Speed of the Electron of a Hydrogen Atom in a Stationary Orbit. - Physics

Advertisements
Advertisements

Question

Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.

Sum

Solution

Let the mass of the electron be m. 

Let the radius of the hydrogen's first stationary orbit be r.

Let the linear speed and the angular speed of the electron be v and ω, respectively.

According to the Bohr's theory, angular momentum (L) of the electron is an integral multiple of h/2 `pi`, where h is the Planck's constant.

`rArr mvr= (nh)/(2pi)` (Here , n is an integer)

V = rω

`⇒ mr^2 omega = (nh)/(2pi)`

`⇒  omega = (nh)/(2pixxmxxr^2)`

`therefore omega = (1xx(6.63xx10^34))/(2xx(3.14)xx(9.1093xx10^-31)xx(0.53xx10^-10)^2`

`= 0.413 xx 10^17  (rad)//s = 4.13 xx 10^16 (rad)//s`

shaalaa.com
The Line Spectra of the Hydrogen Atom
  Is there an error in this question or solution?
Chapter 21: Bohr’s Model and Physics of Atom - Exercises [Page 384]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 21 Bohr’s Model and Physics of Atom
Exercises | Q 18 | Page 384

RELATED QUESTIONS

Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).

(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.


The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?


In which of the following transitions will the wavelength be minimum? 


Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings.

(a) vn
(b) Er
(c) En
(d) vr


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


Find the radius and energy of a He+ ion in the states (a) n = 1, (b) n = 4 and (c) n = 10.


(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.


A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.


Whenever a photon is emitted by hydrogen in Balmer series, it is followed by another photon in Lyman series. What wavelength does this latter photon correspond to?


A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


A gas of hydrogen-like ions is prepared in a particular excited state A. It emits photons having wavelength equal to the wavelength of the first line of the Lyman series together with photons of five other wavelengths. Identify the gas and find the principal quantum number of the state A.


Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


In the Auger process an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom. (This is called an Auger electron). Assuming the nucleus to be massive, calculate the kinetic energy of an n = 4 Auger electron emitted by Chromium by absorbing the energy from a n = 2 to n = 1 transition.


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×