हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Gas of Hydrogen-like Ions is Prepared in a Particular Excited State A. It Emits Photons Having Wavelength Equal to the Wavelength of the First Line of the Lyman Series Together with - Physics

Advertisements
Advertisements

प्रश्न

A gas of hydrogen-like ions is prepared in a particular excited state A. It emits photons having wavelength equal to the wavelength of the first line of the Lyman series together with photons of five other wavelengths. Identify the gas and find the principal quantum number of the state A.

योग

उत्तर

(a) If the atom is excited to the principal quantum (n), then the number of transitions is given by

`(n(n-1))/2`

It is given that a total of 6 photons are emitted. Therefore, total number of transitions is 6.

`therefore (n(n-1))/2`

= 6

⇒ n = 4

Thus, the principal quantum number is 4 and the gas is in the 4th excited state.

shaalaa.com
The Line Spectra of the Hydrogen Atom
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 21 Bohr’s Model and Physics of Atom
Exercises | Q 17 | पृष्ठ ३८४

संबंधित प्रश्न

A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?


Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.


When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.


As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom


The radius of the shortest orbit in a one-electron system is 18 pm. It may be


A hydrogen atom in ground state absorbs 10.2 eV of energy. The orbital angular momentum of the electron is increased by


Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings.

(a) vn
(b) Er
(c) En
(d) vr


Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)

(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


A hydrogen atom emits ultraviolet radiation of wavelength 102.5 nm. What are the quantum numbers of the states involved in the transition?


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


The average kinetic energy of molecules in a gas at temperature T is 1.5 kT. Find the temperature at which the average kinetic energy of the molecules of hydrogen equals the binding energy of its atoms. Will hydrogen remain in molecular from at this temperature? Take k = 8.62 × 10−5 eV K−1.


Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value. 


Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.


Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.

  1. it will not be absorbed at all.
  2. some of atoms will move to the first excited state.
  3. all atoms will be excited to the n = 2 state.
  4. no atoms will make a transition to the n = 3 state.

Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×