हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider an Excited Hydrogen Atom in State N Moving with a Velocity υ(ν<<C). It Emits a Photon in the Direction of Its - Physics

Advertisements
Advertisements

प्रश्न

Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.

योग

उत्तर

Let the frequency emitted by the atom at rest be ν0.

Let the velocity of hydrogen atom in state 'n' be u.

But u << c

Here, the velocity of the emitted photon must be u.

According to the Doppler's effect,

The frequency of the emitted radiation, ν is given by

Frequency of the emitted radiation,  v=v0(1+uc1-uc)

since u <<< c ,

v=v0(1+uc1)

v=v0(1+uc)

Ratio of frequencies of the emitted radiation,

vv0=(1+ue)

shaalaa.com
The Line Spectra of the Hydrogen Atom
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 21 Bohr’s Model and Physics of Atom
Exercises | Q 46 | पृष्ठ ३८६

संबंधित प्रश्न

If Bohr’s quantisation postulate (angular momentum = nh/2π) is a basic law of nature, it should be equally valid for the case of planetary motion also. Why then do we never speak of quantisation of orbits of planets around the sun?


What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?


As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom


The radius of the shortest orbit in a one-electron system is 18 pm. It may be


A hydrogen atom in ground state absorbs 10.2 eV of energy. The orbital angular momentum of the electron is increased by


An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


Find the binding energy of a hydrogen atom in the state n = 2.


Find the radius and energy of a He+ ion in the states (a) n = 1, (b) n = 4 and (c) n = 10.


A hydrogen atom emits ultraviolet radiation of wavelength 102.5 nm. What are the quantum numbers of the states involved in the transition?


Whenever a photon is emitted by hydrogen in Balmer series, it is followed by another photon in Lyman series. What wavelength does this latter photon correspond to?


A gas of hydrogen-like ions is prepared in a particular excited state A. It emits photons having wavelength equal to the wavelength of the first line of the Lyman series together with photons of five other wavelengths. Identify the gas and find the principal quantum number of the state A.


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value. 


A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength 50 nm. Assuming that the entire photon energy is taken up by the electron with what kinetic energy will the electron be ejected?


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.