मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Consider an Excited Hydrogen Atom in State N Moving with a Velocity υ(ν<<C). It Emits a Photon in the Direction of Its - Physics

Advertisements
Advertisements

प्रश्न

Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.

बेरीज

उत्तर

Let the frequency emitted by the atom at rest be ν0.

Let the velocity of hydrogen atom in state 'n' be u.

But u << c

Here, the velocity of the emitted photon must be u.

According to the Doppler's effect,

The frequency of the emitted radiation, ν is given by

Frequency of the emitted radiation,  `v = v_0 ((1 + u/c)/(1 - u/c))`

since u <<< c ,

`v = v_0 ((1+u/c)/1)`

`v = v_0 (1 + u/c)`

Ratio of frequencies of the emitted radiation,

`v/v_0 = (1 + u/e)`

shaalaa.com
The Line Spectra of the Hydrogen Atom
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 21 Bohr’s Model and Physics of Atom
Exercises | Q 46 | पृष्ठ ३८६

संबंधित प्रश्‍न

Which wavelengths will be emitted by a sample of atomic hydrogen gas (in ground state) if electrons of energy 12.2 eV collide with the atoms of the gas?


When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.


What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?


In which of the following transitions will the wavelength be minimum? 


As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom


The radius of the shortest orbit in a one-electron system is 18 pm. It may be


Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)

(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.


A gas of hydrogen-like ions is prepared in a particular excited state A. It emits photons having wavelength equal to the wavelength of the first line of the Lyman series together with photons of five other wavelengths. Identify the gas and find the principal quantum number of the state A.


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


The average kinetic energy of molecules in a gas at temperature T is 1.5 kT. Find the temperature at which the average kinetic energy of the molecules of hydrogen equals the binding energy of its atoms. Will hydrogen remain in molecular from at this temperature? Take k = 8.62 × 10−5 eV K−1.


Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.


Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value. 


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


The Balmer series for the H-atom can be observed ______.

  1. if we measure the frequencies of light emitted when an excited atom falls to the ground state.
  2. if we measure the frequencies of light emitted due to transitions between excited states and the first excited state.
  3. in any transition in a H-atom.
  4. as a sequence of frequencies with the higher frequencies getting closely packed.

In the Auger process an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom. (This is called an Auger electron). Assuming the nucleus to be massive, calculate the kinetic energy of an n = 4 Auger electron emitted by Chromium by absorbing the energy from a n = 2 to n = 1 transition.


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×