Advertisements
Advertisements
प्रश्न
In which of the following transitions will the wavelength be minimum?
पर्याय
n = 5 to n = 4
n = 4 to n = 3
n = 3 to n = 2
n = 2 to n = 1
उत्तर
n = 2 to n = 1
For the transition in the hydrogen-like atom, the wavelength of the emitted radiation is calculated by
`1/lamda = RZ^2 (1/n^1 - 1/n^2)`
Here, R is the Rydberg constant.
For the transition from n = 5 to n = 4, the wavelength is given by
`1/lamda = RZ^2 (1/4^2 - 1/5^2)`
`lamda = 400/(9RZ^2)`
For the transition from n = 4 to n = 3, the wavelength is given by
`1/lamda = RZ^2 (1/3^2 - 1/4^2)`
`lamda = (144)/ (7RZ^2)`
For the transition from n = 3 to n = 2, the wavelength is given by
`1/lamda = RZ^2 (1/2^2 - 1/3^2 )`
`lamda = (36)/(5RZ^2)`
For the transition from n = 2 to n = 1, the wavelength is given by
`1/lamda = RZ^2 (1/2^2 - 1/3^2)`
`lamda = 2/(RZ^2)`
From the above calculations, it can be observed that the wavelength of the radiation emitted for the transition from n = 2 to n = 1 will be minimum.
APPEARS IN
संबंधित प्रश्न
A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?
Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).
(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.
(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.
If Bohr’s quantisation postulate (angular momentum = nh/2π) is a basic law of nature, it should be equally valid for the case of planetary motion also. Why then do we never speak of quantisation of orbits of planets around the sun?
The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?
Which of the following curves may represent the speed of the electron in a hydrogen atom as a function of trincipal quantum number n?
An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision
Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings.
(a) vn
(b) Er
(c) En
(d) vr
Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)
(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle
A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.
A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?
What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?
Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.
The average kinetic energy of molecules in a gas at temperature T is 1.5 kT. Find the temperature at which the average kinetic energy of the molecules of hydrogen equals the binding energy of its atoms. Will hydrogen remain in molecular from at this temperature? Take k = 8.62 × 10−5 eV K−1.
Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.
Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value.
Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?
In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.
Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?