मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Show that the Ratio of the Magnetic Dipole Moment to the Angular Momentum (L = Mvr) is a Universal Constant for Hydrogen-like Atoms and Ions. Find Its Value. - Physics

Advertisements
Advertisements

प्रश्न

Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value. 

बेरीज

उत्तर

Mass of the electron, m = 9.1×10-31kg

Radius of the ground state, r = 0.53×10 -10 m

Let  f be the frequency of  revolution of the electron moving in the ground state and A be the area of orbit.

Dipole moment of the hydrogen like elements (μ) is given by

μ = niA = qfA

`= e xx m/(4∈_0^2 h^3n^3 )xx(pir_0^2n^2)`

`= (me^5xx(pir_0^2n^2))/(4∈_0^2h^3n^3)`

Here,

h = Planck's constant

=  Charge on the electron

ε0 = Permittivity of free space

n = Principal quantum number  

Angular momentum of the electron in the hydrogen like atoms and ions (L) is given by

`L = mvr = (nh)/(2pi)`
Ratio of the dipole moment and the angular momentum is given by

`mu/L =( e^5xxmxxpir^2n^2)/(4∈_0h^3n^3)xx (2pi)/(nh)`

`mu/L =((1.6xx10^-19)^5xx(9.10xx10^-31)(3.14)^2xx(0.53xx10xx^-10)^2)/(2(8.85xx10^-12)^2xx(6.63xx10^-34)^3xx1^2`

`mu/L = 3.73 xx 10^10 C // kg`

Ratio of the magnetic dipole moment and the angular momentum do not depends on the atomic number 'Z'.

Hence, it is a universal constant.

shaalaa.com
The Line Spectra of the Hydrogen Atom
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 21 Bohr’s Model and Physics of Atom
Exercises | Q 26 | पृष्ठ ३८५

संबंधित प्रश्‍न

Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.


The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?


Which wavelengths will be emitted by a sample of atomic hydrogen gas (in ground state) if electrons of energy 12.2 eV collide with the atoms of the gas?


When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.


In which of the following transitions will the wavelength be minimum? 


(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.


A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.


A hydrogen atom in a state having a binding energy of 0.85 eV makes transition to a state with excitation energy 10.2 e.V (a) Identify the quantum numbers n of the upper and the lower energy states involved in the transition. (b) Find the wavelength of the emitted radiation.


A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.


Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?


A hydrogen atom moving at speed υ collides with another hydrogen atom kept at rest. Find the minimum value of υ for which one of the atoms may get ionized.
The mass of a hydrogen atom = 1.67 × 10−27 kg.


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.

  1. it will not be absorbed at all.
  2. some of atoms will move to the first excited state.
  3. all atoms will be excited to the n = 2 state.
  4. no atoms will make a transition to the n = 3 state.

Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×