मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Electrons Are Emitted from an Electron Gun at Almost Zero Velocity and Are Accelerated by an Electric Field E Through a Distance of 1.0 M. the Electrons Are Now Scattered by an - Physics

Advertisements
Advertisements

प्रश्न

Electrons are emitted from an electron gun at almost zero velocity and are accelerated by an electric field E through a distance of 1.0 m. The electrons are now scattered by an atomic hydrogen sample in ground state. What should be the minimum value of E so that red light of wavelength 656.3 nm may be emitted by the hydrogen?

बेरीज

उत्तर

Given:

Distance travelled by the electron, d = 1.0 m

Wavelength of red light ,λ = 656.3 nm = 656.3 × 10^-9 m

Since the given wavelength lies in Balmer series, the transition that requires minimum energy is from n1 = 3 to n2 = 2.
Energy of this transition will be equal to the energy (E) that will be required for the transition from the ground state to n = 3.

`E_1 = 13.6 (1/n_1^2 1/n_2^2)`

`rArr E_1 = 13.6 (1 - 1/9)`

`= (13.6xx8)/9 = 12.09 eV`

Energy, E (eV) = 12.09 eV 

∴ `V = 12.09 V`

Electric field, `E = V/d = 12.09/1 = 12.09 V//m`

 ∴ Minimum value of the electric field = 12.09 V/m = 12.1 V/m

shaalaa.com
The Line Spectra of the Hydrogen Atom
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 21 Bohr’s Model and Physics of Atom
Exercises | Q 32 | पृष्ठ ३८५

संबंधित प्रश्‍न

Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).

(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.


The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?


When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.


What will be the energy corresponding to the first excited state of a hydrogen atom if the potential energy of the atom is taken to be 10 eV when the electron is widely separated from the proton? Can we still write En = E1/n2, or rn = a0 n2?


In which of the following systems will the radius of the first orbit (n = 1) be minimum?


The radius of the shortest orbit in a one-electron system is 18 pm. It may be


A hydrogen atom in ground state absorbs 10.2 eV of energy. The orbital angular momentum of the electron is increased by


An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision


Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings.

(a) vn
(b) Er
(c) En
(d) vr


Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)

(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


Find the radius and energy of a He+ ion in the states (a) n = 1, (b) n = 4 and (c) n = 10.


(a) Find the first excitation potential of He+ ion. (b) Find the ionization potential of Li++ion.


Whenever a photon is emitted by hydrogen in Balmer series, it is followed by another photon in Lyman series. What wavelength does this latter photon correspond to?


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×