मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? - Physics

Advertisements
Advertisements

प्रश्न

Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).

(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.

संख्यात्मक

उत्तर

(a) Charge on an electron, e = 1.6 × 10−19 C

Mass of an electron, me = 9.1 × 10−31 kg

Speed of light, c = 3 × 108 m/s

Let us take a quantity involving the given quantities as `("e"^2/(4piin_0 "m"_"e""c"^2))`.

Where,

0 = Permittivity of free space

And `1/(4pi in_0)` = 9 × 109 N m2 C−2

The numerical value of the taken quantity will be:

`1/(4pi in_0) xx "e"^2/("m"_"e""c"^2)`

= `9 xx 10^9 xx (1.6 xx 10^(-19))^2/(9.1 xx 10^(-31) xx (3 xx 10^8)^2`

= 2.81 × 10−15 m

Hence, the numerical value of the taken quantity is much smaller than the typical size of an atom.

(b) Charge on an electron, e = 1.6 × 10−19 C

Mass of an electron, me = 9.1 × 10−31 kg

Planck’s constant, h = 6.63 × 10−34 Js

Let us take a quantity involving the given quantities as `(4pi in_0 ("h"/(2pi))^2)/("m"_"e" "e"^2)`.

Where,

0 = Permittivity of free space

And , `1/(4pi in_0)` = 9 × 109 N m2 C−2

The numerical value of the taken quantity will be:

`4pi in_0 xx ("h"/(2pi))^2/("m"_"e""e"^2)`

= `1/ (9 xx 10^9) xx ((6.63 xx 10^(-34))/(2 xx 3.14))^2/(9.1 xx 10^-31 xx (1.6 xx 10^-19)^2)`

= 0.53 × 10−10 m

Hence, the value of the quantity taken is of the order of the atomic size.

shaalaa.com
The Line Spectra of the Hydrogen Atom
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Atoms - Exercise [पृष्ठ ४३७]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 12 Atoms
Exercise | Q 12.14 | पृष्ठ ४३७
एनसीईआरटी Physics [English] Class 12
पाठ 12 Atoms
Exercise | Q 14 | पृष्ठ ४३७

संबंधित प्रश्‍न

The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?


When white radiation is passed through a sample of hydrogen gas at room temperature, absorption lines are observed in Lyman series only. Explain.


The minimum orbital angular momentum of the electron in a hydrogen atom is


In which of the following systems will the radius of the first orbit (n = 1) be minimum?


The radius of the shortest orbit in a one-electron system is 18 pm. It may be


A hydrogen atom in ground state absorbs 10.2 eV of energy. The orbital angular momentum of the electron is increased by


Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings.

(a) vn
(b) Er
(c) En
(d) vr


Find the binding energy of a hydrogen atom in the state n = 2.


A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.


A hydrogen atom in a state having a binding energy of 0.85 eV makes transition to a state with excitation energy 10.2 e.V (a) Identify the quantum numbers n of the upper and the lower energy states involved in the transition. (b) Find the wavelength of the emitted radiation.


Whenever a photon is emitted by hydrogen in Balmer series, it is followed by another photon in Lyman series. What wavelength does this latter photon correspond to?


A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.


Positronium is just like a H-atom with the proton replaced by the positively charged anti-particle of the electron (called the positron which is as massive as the electron). What would be the ground state energy of positronium?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×