मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Find the Temperature at Which the Average Thermal Kinetic Energy is Equal to the Energy Needed to Take a Hydrogen Atom from Its Ground State to N = 3 State. Hydrogen Can Now - Physics

Advertisements
Advertisements

प्रश्न

Find the temperature at which the average thermal kinetic energy is equal to the energy needed to take a hydrogen atom from its ground state to n = 3 state. Hydrogen can now emit red light of wavelength 653.1 nm. Because of Maxwellian distribution of speeds, a hydrogen sample emits red light at temperatures much lower than that obtained from this problem. Assume that hydrogen molecules dissociate into atoms.

बेरीज

उत्तर

Given:

Wavelength of red light, λ  = 653.1 nm = 653.1 × 10  m

Kinetic energy of H2 molecules (K) is given by

`K = 3/2 KT` .......(1)

Here, `K = 8.62 xx 10^-5   eV/K`

T = Temperature of H2 molecules

Energy released (E) when atom goes from

ground state to n = 3 is given by

`E = 13.6 (1/n_1^2 - 1/n_2^2)`

For ground state, n1 = 1

Also, n2 = 3  

`therefore E = 13.6 (1/1 - 1/9)`

= `13.6 (8/9)` .............(2)

 kinetic energy of H2 molecules = Energy released when hydrogen atom goes from ground state to n = 3 state

`therefore 3/2 xx 8.62 xx 10^-5xxT = (13.6xx8)/9`

`rArr T = (13.6xx8xx2)/(9xx3xx8.62xx10^-5)` 

= 9.4 × 104  K

shaalaa.com
The Line Spectra of the Hydrogen Atom
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 21 Bohr’s Model and Physics of Atom
Exercises | Q 23 | पृष्ठ ३८५

संबंधित प्रश्‍न

Classically, an electron can be in any orbit around the nucleus of an atom. Then what determines the typical atomic size? Why is an atom not, say, a thousand times bigger than its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom that you have learnt in the text. To simulate what he might well have done before his discovery, let us play as follows with the basic constants of nature and see if we can get a quantity with the dimensions of length that is roughly equal to the known size of an atom (~ 10−10 m).

(a) Construct a quantity with the dimensions of length from the fundamental constants e, me, and c. Determine its numerical value.

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic domain where c is not expected to play any role. This is what may have suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, and e will yield the right atomic size. Construct a quantity with the dimension of length from h, me, and e and confirm that its numerical value has indeed the correct order of magnitude.


The minimum orbital angular momentum of the electron in a hydrogen atom is


In which of the following systems will the radius of the first orbit (n = 1) be minimum?


Which of the following curves may represent the speed of the electron in a hydrogen atom as a function of trincipal quantum number n?


As one considers orbits with higher values of n in a hydrogen atom, the electric potential energy of the atom


Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings.

(a) vn
(b) Er
(c) En
(d) vr


Calculate the smallest wavelength of radiation that may be emitted by (a) hydrogen, (b) He+ and (c) Li++.


A group of hydrogen atoms are prepared in n = 4 states. List the wavelength that are emitted as the atoms make transitions and return to n = 2 states.


Find the maximum Coulomb force that can act on the electron due to the nucleus in a hydrogen atom.


A hydrogen atom in a state having a binding energy of 0.85 eV makes transition to a state with excitation energy 10.2 e.V (a) Identify the quantum numbers n of the upper and the lower energy states involved in the transition. (b) Find the wavelength of the emitted radiation.


Whenever a photon is emitted by hydrogen in Balmer series, it is followed by another photon in Lyman series. What wavelength does this latter photon correspond to?


A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?


Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.


Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).


Average lifetime of a hydrogen atom excited to n = 2 state is 10−8 s. Find the number of revolutions made by the electron on the average before it jumps to the ground state.


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


In the Auger process an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom. (This is called an Auger electron). Assuming the nucleus to be massive, calculate the kinetic energy of an n = 4 Auger electron emitted by Chromium by absorbing the energy from a n = 2 to n = 1 transition.


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×