Advertisements
Advertisements
प्रश्न
Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.
- it will not be absorbed at all.
- some of atoms will move to the first excited state.
- all atoms will be excited to the n = 2 state.
- no atoms will make a transition to the n = 3 state.
पर्याय
b and c
a and c
b and d
c and d
उत्तर
b and d
Explanation:
Let E2 and E1 be the energy corresponding to n = 2 and n = 1 respectively. If radiation of energy ∆E = (E2 – E1) = hf incident on a sample where all the H-atoms are in the ground state, according to the Bohr model some of the atoms will move to the first excited state. As this energy is not sufficient for the transition from n = 1 to n = 3, hence no atoms will make a transition to the n = 3 state.
APPEARS IN
संबंधित प्रश्न
The first excited energy of a He+ ion is the same as the ground state energy of hydrogen. Is it always true that one of the energies of any hydrogen-like ion will be the same as the ground state energy of a hydrogen atom?
In which of the following systems will the radius of the first orbit (n = 1) be minimum?
The radius of the shortest orbit in a one-electron system is 18 pm. It may be
Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)
(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle
Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let r, u, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state
Find the maximum Coulomb force that can act on the electron due to the nucleus in a hydrogen atom.
A hydrogen atom in a state having a binding energy of 0.85 eV makes transition to a state with excitation energy 10.2 e.V (a) Identify the quantum numbers n of the upper and the lower energy states involved in the transition. (b) Find the wavelength of the emitted radiation.
What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?
Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.
Suppose, in certain conditions only those transitions are allowed to hydrogen atoms in which the principal quantum number n changes by 2. (a) Find the smallest wavelength emitted by hydrogen. (b) List the wavelength emitted by hydrogen in the visible range (380 nm to 780 nm).