हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Hydrogen Atom in Ground State Absorbs a Photon of Ultraviolet Radiation of Wavelength 50 Nm. Assuming that the Entire Photon Energy is Taken up by the Electron with What - Physics

Advertisements
Advertisements

प्रश्न

A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength 50 nm. Assuming that the entire photon energy is taken up by the electron with what kinetic energy will the electron be ejected?

योग

उत्तर

Given:

Wavelength of ultraviolet radiation, `lamda = 50 nm = 50xx10^-9m`

We know that the work function of an atom is the energy required to remove an electron from the surface of the atom. So, we can find the work function by calculating the energy required to remove the electron from n1 = 1 to n2 = ∞.

Work function,

`W_0 = 13.6 (1/1 - 1/∞)`

= 13.6 eV

Using Einstein's photoelectric equation, we get

`E = W_0 +KE`

`rArr (hc)/(lamda) - 13.6 =KE   (therefore E = (hc)/lamda)`

`rArr 1242/50 - 13.6 = KE`

`rArr KE = 24.84 - 13.6`

= 11.24 eV

shaalaa.com
The Line Spectra of the Hydrogen Atom
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 21 Bohr’s Model and Physics of Atom
Exercises | Q 29 | पृष्ठ ३८५

संबंधित प्रश्न

Find the wavelength of the electron orbiting in the first excited state in hydrogen atom.


Which of the following curves may represent the speed of the electron in a hydrogen atom as a function of trincipal quantum number n?


An electron with kinetic energy 5 eV is incident on a hydrogen atom in its ground state. The collision


Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)

(a) will pass through the origin
(b) will be a straight line with slope 4
(c) will be a monotonically increasing nonlinear curve
(d) will be a circle


Ionization energy of a hydrogen-like ion A is greater than that of another hydrogen-like ion B. Let ru, E and L represent the radius of the orbit, speed of the electron, energy of the atom and orbital angular momentum of the electron respectively. In ground state


A hydrogen atom emits ultraviolet radiation of wavelength 102.5 nm. What are the quantum numbers of the states involved in the transition?


A hydrogen atom in a state having a binding energy of 0.85 eV makes transition to a state with excitation energy 10.2 e.V (a) Identify the quantum numbers n of the upper and the lower energy states involved in the transition. (b) Find the wavelength of the emitted radiation.


A hydrogen atom in state n = 6 makes two successive transitions and reaches the ground state. In the first transition a photon of 1.13 eV is emitted. (a) Find the energy of the photon emitted in the second transition (b) What is the value of n in the intermediate state?


What is the energy of a hydrogen atom in the first excited state if the potential energy is taken to be zero in the ground state?


Average lifetime of a hydrogen atom excited to n = 2 state is 10−8 s. Find the number of revolutions made by the electron on the average before it jumps to the ground state.


Show that the ratio of the magnetic dipole moment to the angular momentum (l = mvr) is a universal constant for hydrogen-like atoms and ions. Find its value. 


A hydrogen atom moving at speed υ collides with another hydrogen atom kept at rest. Find the minimum value of υ for which one of the atoms may get ionized.
The mass of a hydrogen atom = 1.67 × 10−27 kg.


When a photon is emitted from an atom, the atom recoils. The kinetic energy of recoil and the energy of the photon come from the difference in energies between the states involved in the transition. Suppose, a hydrogen atom changes its state from n = 3 to n = 2. Calculate the fractional change in the wavelength of light emitted, due to the recoil.


Consider an excited hydrogen atom in state n moving with a velocity υ(ν<<c). It emits a photon in the direction of its motion and changes its state to a lower state m. Apply momentum and energy conservation principles to calculate the frequency ν of the emitted radiation. Compare this with the frequency ν0 emitted if the atom were at rest.


In a hydrogen atom the electron moves in an orbit of radius 0.5 A° making 10 revolutions per second, the magnetic moment associated with the orbital motion of the electron will be ______.


Let En = `(-1)/(8ε_0^2) (me^4)/(n^2h^2)` be the energy of the nth level of H-atom. If all the H-atoms are in the ground state and radiation of frequency (E2 - E1)/h falls on it ______.

  1. it will not be absorbed at all.
  2. some of atoms will move to the first excited state.
  3. all atoms will be excited to the n = 2 state.
  4. no atoms will make a transition to the n = 3 state.

In the Auger process an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom. (This is called an Auger electron). Assuming the nucleus to be massive, calculate the kinetic energy of an n = 4 Auger electron emitted by Chromium by absorbing the energy from a n = 2 to n = 1 transition.


A hydrogen atom makes a transition from n = 5 to n = 1 orbit. The wavelength of photon emitted is λ. The wavelength of photon emitted when it makes a transition from n = 5 to n = 2 orbit is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×