हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Parallel Beam of Light of Wavelength 100 Nm Passes Through a Sample of Atomic Hydrogen Gas in Ground State. (A) Assume that When a Photon Supplies Some of Its Energy to a - Physics

Advertisements
Advertisements

प्रश्न

A parallel beam of light of wavelength 100 nm passes through a sample of atomic hydrogen gas in ground state. (a) Assume that when a photon supplies some of its energy to a hydrogen atom, the rest of the energy appears as another photon. Neglecting the light emitted by the excited hydrogen atoms in the direction of the incident beam, what wavelengths may be observed in the transmitted beam? (b) A radiation detector is placed near the gas to detect radiation coming perpendicular to the incident beam. Find the wavelengths of radiation that may be detected by the detector.

योग

उत्तर

Given:

Wavelength of light, λ = 100 nm = `100xx10^-9m`

Energy of the incident light (E) is given by

`E = (hc)/lamda`

Here,

h = Planck's constant

λ = Wavelength of light

`therefore E = 1242/100`

E = 12.42 eV

(a)

Let E1​ and Ebe the energies of the 1st and the 2nd state, respectively.

Let the transition take place from E1 to E2.

Energy absorbed during this transition is calculated as follows:

Here,

n1=1

n2=2

Energy absorbed (E') is given by

`E' = 13.6(1/n_1^2 - 1/n_2^2 )`

         `= 13.6 (1/1 - 1/4)`

         `=13.6 xx 3/4 = 10.2 eV `

Energy left = 12.42 eV − 10.2 eV = 2.22 eV

​Energy of the photon = `(hc)/lamda`

Equating the energy left with that of the photon, we get

`2.22  eV = (hc)/lamda`

`2.22  eV = 1242/lamda`

 or λ = 559.45 = 560 nm

Let E3 be the energy of the 3rd state.

Energy absorbed for the transition

from E1 to E3 is given by

`E' = 13.6(1/n_1^2 - 1/n_2^2)`

 = `13.6 (1/1 - 1/9)`

`= 13.6 xx 8/9 = 12.1  eV`

Energy absorbed in the transition from E1 to E3 = 12.1 eV  (Same as solved above)

Energy left = 12.42 − 12.1 = 0.32 eV

`0.32 = (hc)/lamda = 1242/lamda`

`lamda = 1242/0.32`

= 3881.2 = 3881 nm

Let E4 be the energy of the 4th state.

Energy absorbed in the transition from E3 to E4 is given by

`E' = 13.6 (1/n_1^2 - 1/n_2^2)`

 =`13.6 (1/9 - 1/16)`

`= 13.6 xx 7/144 = 0.65 eV`

Energy absorbed for the transition from n = 3 to n = 4 is 0.65 eV

Energy left = 12.42 − 0.65 = 11.77 eV

Equating this energy with the energy of the photon, we get

`11.77 = (hc)/lamda`

or `lamda = (1242)/(11.77) = 105.52`

The wavelengths observed in the transmitted beam are 105 nm, 560 nm and 3881 nm.

(b)

If the energy absorbed by the 'H' atom is radiated perpendicularly, then the wavelengths of the radiations detected are calculated in the following way:

`E = 10.2 eV`

`rArr 10.2 = (hc)/lamda`

or` lamda = 1242/10.2 = 121.76 nm ≈ 121  nm`

E = 12.1eV

rArr 12.1 = (hc)/lamda`

or `lamda = 1242/12.1 = 102.64 nm ≈ 103  nm `

E = 0.65 eV

`rArr 0.65 = (hc)/lamda`

`or lamda = 1242/0.65 = 1910.7  mn`  1911 nm

Thus, the wavelengths of the radiations detected are 103 nm, 121 nm and 1911 nm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Bohr’s Model and Physics of Atom - Exercises [पृष्ठ ३८५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 21 Bohr’s Model and Physics of Atom
Exercises | Q 30 | पृष्ठ ३८५

संबंधित प्रश्न

The energy associated with the first orbit in the hydrogen atom is - 2.18 × 10-18 J atom-1. What is the energy associated with the fifth orbit?


Draw a neat, labelled energy level diagram for H atom showing the transitions. Explain the series of spectral lines for H atom, whose fixed inner orbit numbers are 3 and 4 respectively.


How many electrons in an atom may have the following quantum numbers?

n = 3, l = 0


If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of 1.5 × 107 ms–1, calculate the energy with which it is bound to the nucleus.


State Bohr's postulate to define stable orbits in the hydrogen atom. How does de Broglie's hypothesis explain the stability of these orbits?


Using Bohr’s postulates, obtain the expressions for (i) kinetic energy and (ii) potential energy of the electron in stationary state of hydrogen atom.

Draw the energy level diagram showing how the transitions between energy levels result in the appearance of Lymann Series.


A positive ion having just one electron ejects it if a photon of wavelength 228 Å or less is absorbed by it. Identify the ion.


The light emitted in the transition n = 3 to n = 2 in hydrogen is called Hα light. Find the maximum work function a metal can have so that Hα light can emit photoelectrons from it.


Draw energy level diagram for a hydrogen atom, showing the first four energy levels corresponding to n=1, 2, 3 and 4. Show transitions responsible for:
(i) Absorption spectrum of Lyman series.
(ii) The emission spectrum of the Balmer series.


According to Bohr's theory, an electron can move only in those orbits for which its angular momentum is integral multiple of ____________.


In form of Rydberg's constant R, the wave no of this first Ballmer line is


The angular momentum of electron in nth orbit is given by


According to Bhor' s theory the moment of momentum of an electron revolving in second orbit of hydrogen atom will be.


The binding energy of a H-atom, considering an electron moving around a fixed nuclei (proton), is B = `- (Me^4)/(8n^2ε_0^2h^2)`. (m = electron mass). If one decides to work in a frame of reference where the electron is at rest, the proton would be moving around it. By similar arguments, the binding energy would be

B = `- (Me^4)/(8n^2ε_0^2h^2)` (M = proton mass)

This last expression is not correct because ______.


If a proton had a radius R and the charge was uniformly distributed, calculate using Bohr theory, the ground state energy of a H-atom when (i) R = 0.1 Å, and (ii) R = 10 Å.


An electron in H-atom makes a transition from n = 3 to n = 1. The recoil momentum of the H-atom will be ______.


In Bohr's theory of hydrogen atom, the electron jumps from higher orbit n to lower orbit p. The wavelength will be minimum for the transition ______.


Specify the transition of an electron in the wavelength of the line in the Bohr model of the hydrogen atom which gives rise to the spectral line of the highest wavelength ______.


Using Bohr’s Theory of hydrogen atom, obtain an expression for the velocity of an electron in the nth orbit of an atom.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×