Advertisements
Advertisements
Question
परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।
Solution
0.714285...
`7)overline(5.0 )`
-49
10
-7
30
-28
20
-14
60
-56
40
-35
5
इसलिए, `5/7`= 0.714285......
= `0.overline714285`
0.8181...
`11)overline(9.0 )`
-88
20
-11
90
-88
20
-11
9
इसलिए, `9/11` = 0.8181......
= `0.overline81`
परिमेय संख्याओं `5/7` तथा `9/11` के बीच तीन अलग-अलग अपरिमेय संख्याएँ ली जा सकती हैं:
- 0.75075007500075000075.......
- 0.767076700767.......
- 0.808008000800008.......
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`7sqrt5`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
`sqrt225`
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
1.101001000100001...
संख्या `sqrt(2)` का दशमलव प्रसार है :
`sqrt(2)` और `sqrt(3)` के बीच एक परिमेय संख्या है :
मान लीजिए कि x और y क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या x + y आवश्यक रूप से एक अपरिमेय संख्या है? अपने उत्तर की पुष्टि के लिए एक उदाहरण दीजिए।
`sqrt(2)/3` एक परिमेय संख्या है।
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।