Advertisements
Advertisements
Question
Prove that:
(cot θ − cosec θ)2 = `(1 − cos θ)/(1 + cos θ)`
Sum
Solution
Taking LHS,
(cot θ − cosec θ)2
⇒ cot2 θ + cosec2 θ − 2 × cot θ × cosec θ
⇒ `(cos^2 θ)/(sin^2 θ) + 1/(sin^2 θ) - 2 xx (cos θ)/(sin θ) xx 1/sin θ`
⇒ `((1 + cos^2 θ))/(sin^2 θ) - (2cos θ)/sin^2 θ`
⇒ `((1 + cos^2 θ - 2 cos θ))/(sin^2 θ)`
⇒ `((1 - cos θ)^2)/sin^2 θ ...["As" sin^2 θ = 1 - cos^ 2θ]`
⇒ `(1 - cos θ)^2/(1 - cos^2 θ)`
⇒ `(1 - cos θ)^2/[[(1 -cosθ)(1 + cos θ)]]`
⇒ `((1 - cos θ))/((1 + cos θ))`
LHS = RHS
Hence, proved.
shaalaa.com
Is there an error in this question or solution?