Advertisements
Advertisements
Question
प्रत्येक द्विघात समीकरण का ठीक एक मूल होता हैं।
Options
सत्य
असत्य
Solution
यह कथन असत्य है।
स्पष्टीकरण:
उदाहरण के लिए, एक द्विघात समीकरण x2 – 9 = 0 के दो अलग-अलग मूल हैं – 3 और 3
APPEARS IN
RELATED QUESTIONS
k के वे मान, जिनके लिए द्विघात समीकरण 2x2 – kx + k = 0 के मूल बराबर होंगे, निम्नलिखित ______ हैं।
पूर्ण वर्ग बनाने की विधि द्वारा द्विघात समीकरण `9x^2 + 3/4x - sqrt(2) = 0` को हल करने के लिए, इसमें किस अचर को जोड़ना और घटाना चाहिए?
निम्नलिखित में से किस समीकरण के कोई वास्तविक मूल नहीं हैं?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x – 1)(x + 2) + 2 = 0
प्रत्येक द्विघात समीकरण का न्यूनतम एक वास्तविक मूल होता है।
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद एक चिन्ह के हों तथा x का गुणांक शून्य हो, तो उस द्विघात समीकरण का कोई वास्तविक मूल नहीं होता है।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 – 3x – 5 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
`1/2x^2 - sqrt(11)x + 1 = 0`
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
8x2 + 2x – 3 = 0