Advertisements
Advertisements
Question
प्रत्येक द्विघात समीकरण का न्यूनतम एक वास्तविक मूल होता है।
Options
सत्य
असत्य
Solution
यह कथन असत्य है।
स्पष्टीकरण:
उदाहरण के लिए, समीकरण x2 + 4 = 0 का कोई वास्तविक मूल नहीं है।
APPEARS IN
RELATED QUESTIONS
निम्न समीकरण का मूल ज्ञात कीजिए:
`x - 1/x = 3, x ≠ 0`
3 वर्ष पूर्व रहमान की आयु (वर्षों में) का व्युत्क्रम और अब से 5 वर्ष पश्चात् आयु के व्युत्क्रम का योग `1/3` है। उसकी वर्तमान आयु ज्ञात कीजिए।
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
2x2 + kx + 3 = 0
द्विघात समीकरण `2x^2 - sqrt(5)x + 1 = 0` के ______।
समीकरण (x2 + 1)2 – x2 = 0 ______.
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x(1 – x) – 2 = 0
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद एक चिन्ह के हों तथा x का गुणांक शून्य हो, तो उस द्विघात समीकरण का कोई वास्तविक मूल नहीं होता है।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 – 3x – 5 = 0
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
–2x2 + 3x + 2 = 0
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
5x2 – 2x – 10 = 0