Advertisements
Advertisements
Question
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
5x2 – 2x – 10 = 0
Solution
दिया गया समीकरण 5x2 – 2x – 10 = 0 है।
ax2 + bx + c = 0 से तुलना करने पर, हमें मिलता है।
a = 5, b = – 2 और c = – 10
∴ विवेचक, D = b2 – 4ac
= (–2)2 – 4(5)(–10)
= 4 + 200
= 204 > 0
इसलिए, समीकरण 5x2 – 2x – 10 = 0 के दो भिन्न वास्तविक मूल हैं।
मूल, `x = (-b +- sqrt(D))/(2a)`
= `(-(-2) +- sqrt(204))/(2 xx 5)`
= `(2 +- 2sqrt(51))/10`
= `(1 +- sqrt(51))/5`
= `(1 + sqrt(51))/5, (1 - sqrt(51))/5`
APPEARS IN
RELATED QUESTIONS
निम्न समीकरण का मूल ज्ञात कीजिए:
`1/(x + 4) - 1/(x - 7) = 11/30, x ≠ -4, 7`
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
kx(x - 2) + 6 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
3x2 – 4x + 1 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x + 4)2 – 8x = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
प्रत्येक द्विघात समीकरण के न्यूनतम दो मूल होते हैं।
प्रत्येक द्विघात समीकरण के अधिकतम दो मूल होते हैं।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
5x2 + 13x + 8 = 0
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
–2x2 + 3x + 2 = 0