Advertisements
Advertisements
Question
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
–2x2 + 3x + 2 = 0
Solution
दिया गया समीकरण –2x2 + 3x + 2 = 0 है।
ax2 + bx + c = 0 से तुलना करने पर, हमें मिलता है।
a = –2, b = 3 और c = 2
∴ विवेचक, D = b2 – 4ac
= (3)2 – 4 – (–2)(2)
= 9 + 16
= 25 > 0
इसलिए, समीकरण –2x2 + 3x + 2 = 0 के दो भिन्न वास्तविक मूल हैं क्योंकि हम जानते हैं कि,
यदि समीकरण ax2 + bx + c = 0 का विवेचक शून्य से बड़ा है, तब इसकी दो भिन्न वास्तविक मूल होती हैं।
मूल, `x = (-b +- sqrt(D))/(2a)`
= `(-3 +- sqrt(25))/(2(-2))`
= `(-3 +- 5)/(-4)`
= `(-3 + 5)/(-4), (-3 - 5)/(-4)`
= `2/(-4), (-8)/(-4)`
= `- 1/2, 2`
APPEARS IN
RELATED QUESTIONS
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
2x2 + kx + 3 = 0
k के वे मान, जिनके लिए द्विघात समीकरण 2x2 – kx + k = 0 के मूल बराबर होंगे, निम्नलिखित ______ हैं।
द्विघात समीकरण `2x^2 - sqrt(5)x + 1 = 0` के ______।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x + 1)(x – 2) + x = 0
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों?
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 – 3x – 5 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
5x2 + 13x + 8 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
–x2 + 7x – 10 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए: