Advertisements
Advertisements
Question
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों?
Solution
हाँ, सभी भिन्न अपरिमेय गुणांकों वाले द्विघात समीकरण पर विचार करें
अर्थात, `sqrt(3)x^2 - 7sqrt(3)x + 12 sqrt(3)` = 0
इस द्विघात समीकरण के मूल 3 और 4 हैं, जो परिमेय हैं।
APPEARS IN
RELATED QUESTIONS
3 वर्ष पूर्व रहमान की आयु (वर्षों में) का व्युत्क्रम और अब से 5 वर्ष पश्चात् आयु के व्युत्क्रम का योग `1/3` है। उसकी वर्तमान आयु ज्ञात कीजिए।
क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
यदि समीकरण `x^2 + kx - 5/4 = 0` का एक मूल `1/2` है, तो k का मान ______ हैं।
निम्नलिखित में से किस समीकरण के मूलों का योग 3 है?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
3x2 – 4x + 1 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
पूर्णांकीय गुणांकों वाली एक द्विघात समीकरण के पूर्णांकीय मूल होते हैं।अपने उत्तर का औचित्य दीजिए।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 – 3x – 5 = 0
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
5x2 – 2x – 10 = 0