हिंदी

क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों?

योग

उत्तर

हाँ, सभी भिन्न अपरिमेय गुणांकों वाले द्विघात समीकरण पर विचार करें

अर्थात, `sqrt(3)x^2 - 7sqrt(3)x + 12 sqrt(3)` = 0

इस द्विघात समीकरण के मूल 3 और 4 हैं, जो परिमेय हैं।

shaalaa.com
मूलों की प्रकृति
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: द्विघात समीकरण - प्रश्नावली 4.2 [पृष्ठ ४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 4 द्विघात समीकरण
प्रश्नावली 4.2 | Q 5. | पृष्ठ ४१

संबंधित प्रश्न

निम्नलिखित में से किस समीकरण के कोई वास्तविक मूल नहीं हैं?


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

x2 – 3x + 4 = 0


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

`2x^2 - 6x + 9/2 = 0`

बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

(x + 4)2 – 8x = 0


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

`(x - sqrt(2))^2 - 2(x + 1) = 0`

बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

x(1 – x) – 2 = 0


प्रत्येक द्विघात समीकरण का न्यूनतम एक वास्तविक मूल होता है।


निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:

`x^2 - 3sqrt(5)x + 10 = 0`


निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:

`1/2x^2 - sqrt(11)x + 1 = 0`


ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।

8x+ 2x – 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×