Advertisements
Advertisements
प्रश्न
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों?
उत्तर
हाँ, सभी भिन्न अपरिमेय गुणांकों वाले द्विघात समीकरण पर विचार करें
अर्थात, `sqrt(3)x^2 - 7sqrt(3)x + 12 sqrt(3)` = 0
इस द्विघात समीकरण के मूल 3 और 4 हैं, जो परिमेय हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित में से किस समीकरण के कोई वास्तविक मूल नहीं हैं?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x2 – 3x + 4 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x + 4)2 – 8x = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x(1 – x) – 2 = 0
प्रत्येक द्विघात समीकरण का न्यूनतम एक वास्तविक मूल होता है।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
`x^2 - 3sqrt(5)x + 10 = 0`
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
`1/2x^2 - sqrt(11)x + 1 = 0`
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
8x2 + 2x – 3 = 0