Advertisements
Advertisements
प्रश्न
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक परिमेय संख्याएँ हैं, परंतु दोनों मूल अपरिमेय हैं? अपने उत्तर का औचित्य दीजिए।
उत्तर
हां, तर्कसंगत गुणांक के साथ द्विघात समीकरण 2x2 + x – 4 = 0 पर विचार करें।
दिए गए द्विघात समीकरण के मूल `(-1 + sqrt(33))/4` और `(-1 - sqrt(33))/4` अपरिमेय हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित में से किस समीकरण के दो भिन्न वास्तविक मूल हैं?
समीकरण (x2 + 1)2 – x2 = 0 ______.
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x2 – 3x + 4 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x – 1)(x + 2) + 2 = 0
प्रत्येक द्विघात समीकरण का ठीक एक मूल होता हैं।
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद विपरीत चिन्हों के हों तो उस द्विघात समीकरण के वास्तविक मूल होते हैं।
यदि b = 0, c < 0 है, तो क्या यह सत्य है कि x2 + bx + c = 0 के मूल संख्यात्मक रूप से बराबर परंतु विपरीत चिन्हों के होंगे? अपने उत्तर का औचित्य दीजिए।
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
8x2 + 2x – 3 = 0