Advertisements
Advertisements
प्रश्न
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
8x2 + 2x – 3 = 0
उत्तर
दिया गया समीकरण 8x2 + 2x – 3 = 0 है।
ax2 + bx + c = 0 से तुलना करने पर, हमें मिलता है।
a = 8, b = 2 और c = – 3
∴ विवेचक, D = b2 – 4ac
= (2)2 – 4(8)(– 3)
= 4 + 96
= 100 > 0
इसलिए, समीकरण 8x2 + 2x – 3 = 0 की दो अलग वास्तविक जड़ें हैं क्योंकि हम जानते हैं कि
अगर समीकरण ax2 + bx – c = 0 में शून्य से अधिक विविक्तकर है, तो इसके दो भिन्न वास्तविक मूल हैं।
मूल, `x = (-b +- sqrt(D))/(2a)`
= `(-2 +- sqrt(100))/16`
= `(-2 +- 10)/16`
= `(-2 + 10)/16, (-1 - 10)/16`
= `8/16, -12/16`
= `1/2, - 3/4`
APPEARS IN
संबंधित प्रश्न
निम्न समीकरण का मूल ज्ञात कीजिए:
`1/(x + 4) - 1/(x - 7) = 11/30, x ≠ -4, 7`
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
2x2 + kx + 3 = 0
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
kx(x - 2) + 6 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x(1 – x) – 2 = 0
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x – 1)(x + 2) + 2 = 0
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद एक चिन्ह के हों तथा x का गुणांक शून्य हो, तो उस द्विघात समीकरण का कोई वास्तविक मूल नहीं होता है।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 – 3x – 5 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
`1/2x^2 - sqrt(11)x + 1 = 0`