Advertisements
Advertisements
प्रश्न
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों?
उत्तर
हाँ, सभी भिन्न अपरिमेय गुणांकों वाले द्विघात समीकरण पर विचार करें
अर्थात, `sqrt(3)x^2 - 7sqrt(3)x + 12 sqrt(3)` = 0
इस द्विघात समीकरण के मूल 3 और 4 हैं, जो परिमेय हैं।
APPEARS IN
संबंधित प्रश्न
निम्न द्विघात समीकरण के मूल की प्रकृति ज्ञात कीजिए। यदि मूल का अस्तित्व हो तो उन्हें ज्ञात कीजिए:
2x2 - 6x + 3 = 0
निम्नलिखित में से किस समीकरण के कोई वास्तविक मूल नहीं हैं?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x(1 – x) – 2 = 0
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद विपरीत चिन्हों के हों तो उस द्विघात समीकरण के वास्तविक मूल होते हैं।
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक परिमेय संख्याएँ हैं, परंतु दोनों मूल अपरिमेय हैं? अपने उत्तर का औचित्य दीजिए।
यदि b = 0, c < 0 है, तो क्या यह सत्य है कि x2 + bx + c = 0 के मूल संख्यात्मक रूप से बराबर परंतु विपरीत चिन्हों के होंगे? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
2x2 – 3x – 5 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
–2x2 + 3x + 2 = 0