English

क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।

Sum

Solution 1

मान लीजिए आम के बाग की चौड़ाई l है।

आम के बाग की लंबाई 2l होगी।

आम के बाग का क्षेत्रफल = (2l) (l) = 2l2

2l2 = 800

l2 = `800/2`

l2 = 400

l2 - 400 = 0

इस समीकरण की तुलना al2 + bl + c = 0, से करने पर, हमें मिलता है

a = 1, b = 0, c = 400

विविक्तकर = b2 - 4ac = (0)2 - 4 × (1) × (- 400)

= 1600

यहाँ, b2 - 4ac > 0

इसलिए, समीकरण के वास्तविक मूल होंगे। और इसलिए, वांछित आयताकार आम के बाग को डिज़ाइन किया जा सकता है।

l = ±20

हालाँकि, लंबाई ऋणात्मक नहीं हो सकती।

इसलिए, आम के बाग की चौड़ाई = 20 m

आम के बाग की लंबाई = 2 × 20 = 40 m

shaalaa.com

Solution 2

मान लीजिए आम की बगिया की चौड़ाई = x m

तो उसकी लंबाई = 2x m 

तब प्रश्नानुसार, क्षेत्रफल = 2x × x = 800 m2

⇒ 2x2 = 800

⇒ x2 = 400

⇒ x = ± `sqrt400`

⇒ x = ± 20

लेकिन माप ऋणात्मक नहीं हो सकती, अतः x = 20 m

अतः बगिया की चौड़ाई = 20 m

एवं लंबाई = 2x = 2 × 20 = 40 m

अत: बगिया बनाना संभव है तथा बगिया की अभीष्ट लंबाई एवं चौड़ाई क्रमशः 40 m एवं 20 m है।

shaalaa.com
मूलों की प्रकृति
  Is there an error in this question or solution?
Chapter 4: द्विघात समीकरण - प्रश्नावली 4.4 [Page 100]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 4 द्विघात समीकरण
प्रश्नावली 4.4 | Q 3. | Page 100

RELATED QUESTIONS

निम्न समीकरण का मूल ज्ञात कीजिए:

`x - 1/x = 3, x ≠ 0`


क्या निम्न स्थिति संभव है? यदि है तो उनकी वर्तमान आयु ज्ञात कीजिए। दो मित्रों की आयु का योग 20 वर्ष है। चार वर्ष पूर्व उनकी आयु (वर्षों में) का गुणनफल 48 था।


पूर्ण वर्ग बनाने की विधि द्वारा द्विघात समीकरण `9x^2 + 3/4x - sqrt(2) = 0` को हल करने के लिए, इसमें किस अचर को जोड़ना और घटाना चाहिए?


द्विघात समीकरण `2x^2 - sqrt(5)x + 1 = 0` के ______।


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

(x – 1)(x + 2) + 2 = 0


प्रत्येक द्विघात समीकरण का न्यूनतम एक वास्तविक मूल होता है।


प्रत्येक द्विघात समीकरण के अधिकतम दो मूल होते हैं।


यदि b = 0, c < 0 है, तो क्या यह सत्य है कि x2 + bx + c = 0 के मूल संख्यात्मक रूप से बराबर परंतु विपरीत चिन्हों के होंगे? अपने उत्तर का औचित्य दीजिए।


निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:

–x2 + 7x – 10 = 0


निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:

`1/2x^2 - sqrt(11)x + 1 = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×