Advertisements
Advertisements
प्रश्न
क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
उत्तर १
मान लीजिए आम के बाग की चौड़ाई l है।
आम के बाग की लंबाई 2l होगी।
आम के बाग का क्षेत्रफल = (2l) (l) = 2l2
2l2 = 800
l2 = `800/2`
l2 = 400
l2 - 400 = 0
इस समीकरण की तुलना al2 + bl + c = 0, से करने पर, हमें मिलता है
a = 1, b = 0, c = 400
विविक्तकर = b2 - 4ac = (0)2 - 4 × (1) × (- 400)
= 1600
यहाँ, b2 - 4ac > 0
इसलिए, समीकरण के वास्तविक मूल होंगे। और इसलिए, वांछित आयताकार आम के बाग को डिज़ाइन किया जा सकता है।
l = ±20
हालाँकि, लंबाई ऋणात्मक नहीं हो सकती।
इसलिए, आम के बाग की चौड़ाई = 20 m
आम के बाग की लंबाई = 2 × 20 = 40 m
उत्तर २
मान लीजिए आम की बगिया की चौड़ाई = x m
तो उसकी लंबाई = 2x m
तब प्रश्नानुसार, क्षेत्रफल = 2x × x = 800 m2
⇒ 2x2 = 800
⇒ x2 = 400
⇒ x = ± `sqrt400`
⇒ x = ± 20
लेकिन माप ऋणात्मक नहीं हो सकती, अतः x = 20 m
अतः बगिया की चौड़ाई = 20 m
एवं लंबाई = 2x = 2 × 20 = 40 m
अत: बगिया बनाना संभव है तथा बगिया की अभीष्ट लंबाई एवं चौड़ाई क्रमशः 40 m एवं 20 m है।
APPEARS IN
संबंधित प्रश्न
निम्न द्विघात समीकरण के मूल की प्रकृति ज्ञात कीजिए। यदि मूल का अस्तित्व हो तो उन्हें ज्ञात कीजिए:
2x2 - 6x + 3 = 0
क्या निम्न स्थिति संभव है? यदि है तो उनकी वर्तमान आयु ज्ञात कीजिए। दो मित्रों की आयु का योग 20 वर्ष है। चार वर्ष पूर्व उनकी आयु (वर्षों में) का गुणनफल 48 था।
पूर्ण वर्ग बनाने की विधि द्वारा द्विघात समीकरण `9x^2 + 3/4x - sqrt(2) = 0` को हल करने के लिए, इसमें किस अचर को जोड़ना और घटाना चाहिए?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
(x + 1)(x – 2) + x = 0
प्रत्येक द्विघात समीकरण के न्यूनतम दो मूल होते हैं।
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद विपरीत चिन्हों के हों तो उस द्विघात समीकरण के वास्तविक मूल होते हैं।
क्या किसी ऐसी द्विघात समीकरण का अस्तित्व है, जिसके सभी गुणांक भिन्न-भिन्न अपरिमेय संख्याएँ हैं, परंतु दोनों मूल परिमेय हैं? क्यों?
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।