Advertisements
Advertisements
प्रश्न
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
उत्तर
द्विघात समीकरण के मूल ज्ञात करने का द्विघात सूत्र
ax2 + bx + c = 0, a ≠ 0 द्वारा दिया गया है,
x = `(-b +- sqrt(b^2 - 4ac))/(2a)`
∴ x = `(-2sqrt(2) +- sqrt((2sqrt(2))^2 - 4(1)(-6)))/(2(1))`
= `(-2sqrt(2) +- sqrt(32))/2`
= `(-2sqrt(2) +- 4sqrt(2))/2`
= `sqrt(2), -3sqrt(2)`
APPEARS IN
संबंधित प्रश्न
निम्न समीकरण का मूल ज्ञात कीजिए:
`x - 1/x = 3, x ≠ 0`
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
2x2 + kx + 3 = 0
क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
पूर्ण वर्ग बनाने की विधि द्वारा द्विघात समीकरण `9x^2 + 3/4x - sqrt(2) = 0` को हल करने के लिए, इसमें किस अचर को जोड़ना और घटाना चाहिए?
निम्नलिखित में से किस समीकरण के दो भिन्न वास्तविक मूल हैं?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
प्रत्येक द्विघात समीकरण का ठीक एक मूल होता हैं।
प्रत्येक द्विघात समीकरण के अधिकतम दो मूल होते हैं।
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद एक चिन्ह के हों तथा x का गुणांक शून्य हो, तो उस द्विघात समीकरण का कोई वास्तविक मूल नहीं होता है।