English

क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।

Sum

Solution 1

मान लीजिए पार्क की लंबाई और चौड़ाई l और b है।

परिमाप = 2 (l + b) = 80

l + b = 40

या, b = 40 - l

क्षेत्रफल = l × b = l(40 - l) = 40l - l2 40l - l2 = 400

l2 - 40l + 400 = 0

इस समीकरण की तुलना al2 + bl + c = 0, से करने पर, हमें प्राप्त होता है

a = 1, b = -40, c = 400

विविक्तकर = b2 - 4ac

(-40)2 - 4 × 400

= 1600 - 1600 = 0

b2 - 4ac = 0

इसलिए, इस समीकरण के वास्तविक मूल बराबर हैं। और इसलिए, यह स्थिति संभव है।

इस समीकरण का मूल, l = `-b/(2a)`

l = `(40)/(2(1))`

= `40/2`

l = 20

इसलिए, पार्क की लंबाई, l = 20 m

और पार्क की चौड़ाई, b = 40 - l = 40 - 20 = 20 m

shaalaa.com

Solution 2

माना पार्क का लंबाई = x m

और चौड़ाई  = y m

तो, 2(लंबाई + चौड़ाई) = परिमाप

2(x + y) = 80 m

x + y = 40 m

y = 40 - x m 

अतः चौड़ाई = 40 - x m

अब, लंबाई × चौड़ाई = क्षेत्रफल

x(40 - x) = 400

⇒ 40x - x2 = 400

⇒ x2 - 40x + 400 = 0

⇒ x2 - 20x - 20x + 400 = 0

⇒ x(x - 20) - 20(x - 20) = 0

⇒ (x - 20)(x - 20) = 0

⇒ x - 20 = 0, x - 20 = 0

⇒ x = 20 और x = 20

अतः पार्क की लंबाई = 20 मीटर तो चौड़ाई = 40 - 20 = 20 मीटर

shaalaa.com
मूलों की प्रकृति
  Is there an error in this question or solution?
Chapter 4: द्विघात समीकरण - प्रश्नावली 4.4 [Page 100]

APPEARS IN

NCERT Mathematics [Hindi] Class 10
Chapter 4 द्विघात समीकरण
प्रश्नावली 4.4 | Q 5. | Page 100

RELATED QUESTIONS

निम्न समीकरण का मूल ज्ञात कीजिए:

`x - 1/x = 3, x ≠ 0`


निम्न द्विघात समीकरण के मूल की प्रकृति ज्ञात कीजिए। यदि मूल का अस्तित्व हो तो उन्हें ज्ञात कीजिए:

2x2 - 6x + 3 = 0


क्या एक ऐसी आम की बगिया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m2 हो? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।


k के वे मान, जिनके लिए द्विघात समीकरण 2x2 – kx + k = 0 के मूल बराबर होंगे, निम्नलिखित ______ हैं।


पूर्ण वर्ग बनाने की विधि द्वारा द्विघात समीकरण `9x^2 + 3/4x - sqrt(2) = 0` को हल करने के लिए, इसमें किस अचर को जोड़ना और घटाना चाहिए?


निम्नलिखित में से किस समीकरण के दो भिन्न वास्तविक मूल हैं?


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

2x2 + x – 1 = 0


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

`2x^2 - 6x + 9/2 = 0`

प्रत्येक द्विघात समीकरण का ठीक एक मूल होता हैं।


ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।

`1/(2x - 3) + 1/(x - 5) = 1, x ≠ 3/2, 5`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×