हिंदी

क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।

योग

उत्तर १

मान लीजिए पार्क की लंबाई और चौड़ाई l और b है।

परिमाप = 2 (l + b) = 80

l + b = 40

या, b = 40 - l

क्षेत्रफल = l × b = l(40 - l) = 40l - l2 40l - l2 = 400

l2 - 40l + 400 = 0

इस समीकरण की तुलना al2 + bl + c = 0, से करने पर, हमें प्राप्त होता है

a = 1, b = -40, c = 400

विविक्तकर = b2 - 4ac

(-40)2 - 4 × 400

= 1600 - 1600 = 0

b2 - 4ac = 0

इसलिए, इस समीकरण के वास्तविक मूल बराबर हैं। और इसलिए, यह स्थिति संभव है।

इस समीकरण का मूल, l = `-b/(2a)`

l = `(40)/(2(1))`

= `40/2`

l = 20

इसलिए, पार्क की लंबाई, l = 20 m

और पार्क की चौड़ाई, b = 40 - l = 40 - 20 = 20 m

shaalaa.com

उत्तर २

माना पार्क का लंबाई = x m

और चौड़ाई  = y m

तो, 2(लंबाई + चौड़ाई) = परिमाप

2(x + y) = 80 m

x + y = 40 m

y = 40 - x m 

अतः चौड़ाई = 40 - x m

अब, लंबाई × चौड़ाई = क्षेत्रफल

x(40 - x) = 400

⇒ 40x - x2 = 400

⇒ x2 - 40x + 400 = 0

⇒ x2 - 20x - 20x + 400 = 0

⇒ x(x - 20) - 20(x - 20) = 0

⇒ (x - 20)(x - 20) = 0

⇒ x - 20 = 0, x - 20 = 0

⇒ x = 20 और x = 20

अतः पार्क की लंबाई = 20 मीटर तो चौड़ाई = 40 - 20 = 20 मीटर

shaalaa.com
मूलों की प्रकृति
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: द्विघात समीकरण - प्रश्नावली 4.4 [पृष्ठ १००]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 4 द्विघात समीकरण
प्रश्नावली 4.4 | Q 5. | पृष्ठ १००

संबंधित प्रश्न

निम्न समीकरण का मूल ज्ञात कीजिए:

`1/(x + 4) - 1/(x - 7) = 11/30, x ≠ -4, 7`


बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

`(x - sqrt(2))^2 - 2(x + 1) = 0`

बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।

(x + 1)(x – 2) + x = 0


प्रत्येक द्विघात समीकरण का ठीक एक मूल होता हैं।


प्रत्येक द्विघात समीकरण का न्यूनतम एक वास्तविक मूल होता है।


प्रत्येक द्विघात समीकरण के अधिकतम दो मूल होते हैं।


निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:

2x2 – 3x – 5 = 0


निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:

`x^2 + 2sqrt(2)x - 6 = 0`

ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।

5x2 – 2x – 10 = 0


ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।

`1/(2x - 3) + 1/(x - 5) = 1, x ≠ 3/2, 5`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×