Advertisements
Advertisements
Question
निम्न समीकरण का मूल ज्ञात कीजिए:
`1/(x + 4) - 1/(x - 7) = 11/30, x ≠ -4, 7`
Solution
`1/(x + 4) - 1/(x - 7) = 11/30`
`(x - 7 - (x + 4))/((x + 4)(x - 7)) = 11/30`
⇒ `(x - 7 - x - 4)/(x^2 - 7x + 4x - 28) = 11/30`
⇒ `(-11)/(x^2 - 3x - 28) = 11/30`
⇒ `(-1)/(x^2 - 3x - 28) = 1/30`
⇒ x2 - 3x - 28 = -30
⇒ x2 - 3x - 28 + 30 = 0
⇒ x2 - 3x + 2 = 0
⇒ x2 - 2x - x + 2 = 0
⇒ x(x - 2) - 1(x - 2) = 0
⇒ (x - 2)(x - 1) = 0
⇒ x - 2 = 0, x - 1 = 0
⇒ x = 2 और x = 1
APPEARS IN
RELATED QUESTIONS
क्या परिमाप 80 m तथा क्षेत्रफल 400 m2 के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।
यदि समीकरण `x^2 + kx - 5/4 = 0` का एक मूल `1/2` है, तो k का मान ______ हैं।
समीकरण (x2 + 1)2 – x2 = 0 ______.
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
2x2 + x – 1 = 0
प्रत्येक द्विघात समीकरण के न्यूनतम दो मूल होते हैं।
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद विपरीत चिन्हों के हों तो उस द्विघात समीकरण के वास्तविक मूल होते हैं।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
5x2 + 13x + 8 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
–x2 + 7x – 10 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
`1/2x^2 - sqrt(11)x + 1 = 0`