Advertisements
Advertisements
Question
`vecr = 3hati + hatj + 2hatk + l(hati - hatj + 2hatk)` and `vecr = 2hati + hatj + 56hatk + m(3hati - 5hatj + 4hatk)`
Options
`cos^-1 (15/8)`
`cos^-1 ((8sqrt(3))/15)`
`cos^-1 (15/(8sqrt(3)))`
None of these
Solution
`cos^-1 ((8sqrt(3))/15)`
Explanation:
Let `phi` be the angle between the given lines. The given lines are parallel to the vectors.
`vecb_1 = hati - hatj - 2hatk` and `vecb_1 = 3hati - 5hatj - 4hatk` respectively.
The angle `phi` between then is given by
`cos phi = (vecb_1 * vecb_2)/(|vecb_1||vecb_2|)`
= `((hati - hatj - 2hatk) * (3hati - 5hatj - 4hatk))/(|hati - hatj - 2hatk||hati - hatj - 2hatk|)`
= `((1)(3) + (-1)(-5) + (-2)(-4))/(sqrt(1 + 1 + 4) sqrt(9 + 25 + 16)`
= `(3 + 5 + 8)/(sqrt(6) sqrt(50)`
= `16/(sqrt(6) sqrt(50)`
= `16/(sqrt(2) sqrt(3), 5sqrt(2)`
= `(16sqrt(3))/(3 xx 10)`
= `(8sqrt(3))/15`
⇒ `phi cos^-1 ((8sqrt(3))/15)`