Advertisements
Advertisements
Question
सचिन द्वारा राष्ट्रीय बचत प्रमाणपत्र मेंं पहले वर्ष ₹ 5000, दूसरे वर्ष ₹ 7000, तीसरे वर्ष ₹ 9000 इस प्रकार निवेश किया गया तो सचिन ने 12 वर्षों मेंं कुल कितना निवेश किया?
Solution
सचिन ने ₹ 5000, ₹ 7000, ₹ 9000 इस प्रकार 12 वर्षों तक पैसे निवेश किए।
इस प्रकार, 5000, 7000, 9000, ... अनुक्रमणिका प्राप्त होता है।
सामान्य अंतर = d = 7000 − 5000 = 9000 − 7000 = 2000
d अचर है।
इस कारण यह अंकगणितीय श्रृंखला है।
यहाँ, a = 5000 तथा n = 12
12 वर्षों मेंं किया गया निवेश अर्थात S12 का मान ज्ञात करना है।
Sn = `"n"/2 [2"a" + ("n" - 1)"d"]` .....(सूत्र)
∴ S12 = `12/2 [2 xx 5000 + (12 -1 ) xx 2000]` ......(मान प्रतिस्थापित करने पर)
∴ S12 = 6 [2 × 5000 + 11 × 2000]
= 6 (10000 + 22000)
= 6 × 32000
= 192000
∴ S12 = 192000
∴ सचिन द्वारा 12 वर्षों मेंं निवेश की गई कुल राशि ₹ 1,92,000 है।
APPEARS IN
RELATED QUESTIONS
सानिका ने 1 जनवरी 2016 को निश्चित किया कि उस दिन ₹ 10, दूसरे दिन ₹ 11, तीसरे दिन ₹ 12 इस प्रकार बचत करते रहना है। 31 डिसेंबर 2016 तक उसकी कुल बचत कितनी हुई?
किसी व्यक्ति ने ₹ 8000 कर्ज लिया तथा उस पर ₹ 1360 ब्याज देने का वादा किया। प्रत्येक किस्त के बाद ₹ 40 कम करते हुए कुल 12 किस्तों मेंं उसने कर्ज का भुगतान कर दिया, तो उस व्यक्ति द्वारा भुगतान की गई पहली तथा अंतिम किस्त कितनी होगी?
किसी नाट्यगृह मेंं कुर्सियों की कुल 27 कतारें हैं। पहली कतार मेंं कुल 20 कुर्सियाँ हैं, दूसरी कतार मेंं कुल 22 कुर्सियाँ तथा तीसरी कतार में कुल 24 कुर्सियाँ हों तो 15 वीं कतार मेंं कुल कितनी कुर्सियाँ होंगी तथा नाट्यगृह मेंं कुल कितनी कुर्सियाँ होंगी?
अंतरराष्ट्रीय पर्यावरण दिवस के उपलक्ष्य मेंं त्रिभुजाकार जमीन पर वृक्षारोपण कार्यक्रम आयोजित किया गया। पहली पंक्ति मेंं 1 पौधा दूसरी पंक्ति मेंं 2 पौधे तीसरी पंक्ति मेंं तीन इस प्रकार 25 पंक्तियों मेंं पौधे लगाए गए, तो कुल कितने पौधे लगाए गए?
207 इस संख्या के 3 भाग इस प्रकार कीजिए कि वे संख्याएँ अंकगणितीय श्रृंखला मेंं हो तथा उनमें से दो छोटी संख्याओं का गुणनफल 4623 हो।
एक अंकगणितीय श्रृंखला मेंं 37 पद हैं। सबसे मध्य के तीन पदों का योगफल 225 है और अंतिम तीन पदों का योगफल 429 हो तो अंकगणितीय श्रृंखला लिखिए।
जिस अंकगणितीय श्रृंखला का प्रथम पद a, दूसरा पद b और अंतिम पद c हो तो उस श्रृंखला के सभी पदों का योगफल `(("a" + "c") ("b" + "c" - 2"a"))/2 ("b" - "a")` है सिद्ध कीजिए।
अंकगणितीय श्रृंखला को m वें पद का m गुना यह n वें पद के n गुने के बराबर हो तो दिखाइए कि उसका (m + n) वाँ पद शून्य होता है।
₹ 1000 का 10% साधारण ब्याज की दर से निवेश किया तो प्रत्येक वर्ष के अंत मेंं मिलने वाली ब्याज की रकम अंकगणितीय श्रृंखला होगी क्या? जाँच कीजिए। यदि अंकगणितीय श्रृंखला में हो तो 20 वर्ष के पश्चात प्राप्त होने वाली ब्याज की रकम ज्ञात कीजिए। इसके लिए नीचे दी गई कृति पूर्ण कीजिए।
साधारण ब्याज = `("P" xx "R" xx "N")/100`
1 वर्ष के पश्चात प्राप्त होने वाला साधारण ब्याज = `(1000 xx 10 xx 1)/100` = `square`
2 वर्ष के पश्चात प्राप्त होने वाला साधारण ब्याज = `(1000 xx 10 xx 2)/100` = `square`
3 वर्ष के पश्चात प्राप्त होने वाला साधारण ब्याज = `(square xx square xx square)/100` = 300
इस प्रकार 4, 5, 6 वर्षों के पश्चात प्राप्त होने वाला ब्याज क्रमश: 400, `square`, `square` होगा।
इस संख्या के आधार पर d = `square`, और a = `square`
20 वर्ष के पश्चात प्राप्त होने वाला ब्याज
tn = a + (n − 1)d
t20 = `square` + (20 − 1) `square`
t20 = `square`
20 वर्ष के पश्चात प्राप्त कुल ब्याज = `square`
किसी त्रिभुज के कोणों के माप अंकगणितीय श्रृंखला में हैं। सबसे छोटे कोण का माप सामान्य अंतर के 5 गुना है। उस त्रिभुज के सभी कोणों के माप ज्ञात करो। (त्रिभुज के कोणों के माप a, a + d, a + 2d लो।)